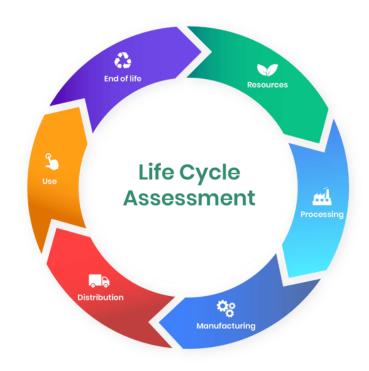
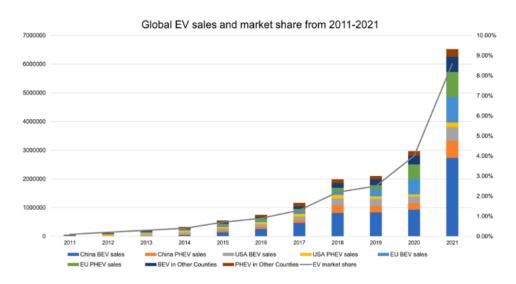
Life Cycle Assessment of Electric Vehicle Batteries


Understanding Environmental Impact from Cradle to Grave

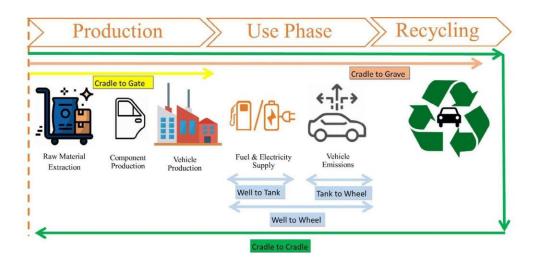
Taltech Summer School


11 June 2025

What Is Life Cycle Assessment (LCA)?

- A systematic analysis of the environmental impacts associated with all stages of a product's life from raw material extraction to endof-life disposal or recycling.
- Essential for understanding EV sustainability beyond tailpipe emissions.

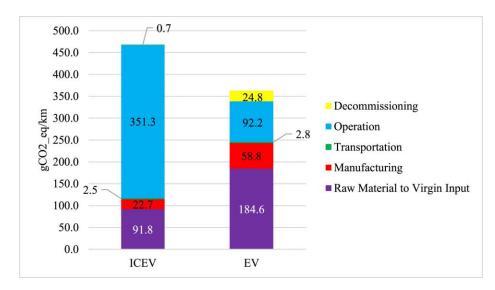
Why LCA for Electric Vehicles?



Separation and Purification Technology 301 (2022) 122063

- EV sales are rapidly increasing worldwide
- ullet Tailpipe emissions shift to upstream impacts ullet Electricity source and battery origin matter
- End-of-life challenges → Battery disposal and recycling require urgent attention

LCA Stages Applied to EVs


- Raw materials extraction →
 mining of lithium, cobalt,
 nickel, etc.
- Material processing & manufacturing → battery cell and pack production
- Use phase → zero tailpipe emission
- End of life → Recycling, material recovery, and circular economy potentials

Materials Today: Proceedings 49 (2022) 217-222

EV vs. ICEV: Emission Comparison

- EV has higher production
 emissions (purple and red colored bar) but lower use phase emissions (blue-colored bar).
- Break-even point depends on grid cleanliness and usage patterns.

Journal of Cleaner Production 390 (2023) 136111

Key Factors Affecting LCA Outcomes

- Electricity mix → Source of charging energy (coal vs renewables)
- Battery type and size → Chemistry (NMC, LFP, etc.) and capacity impact total emission
- Manufacturing location → Regional energy efficiency and industrial practices
- Vehicle lifespan and mileage → Longer use spreads environmental costs more efficiently
- End-of-life treatment
- Material sourcing → Mining practices

Challenges and Uncertainties

- Data Gaps & Inconsistencies → Limited access to detailed, standardized life cycle data
- Rapid Technology Evolution → Frequent changes in battery chemistries and manufacturing methods
- Geographic Variability → Differences in electricity grids, regulations, and production processes
- End-of-Life Scenarios → Uncertainty around future recycling systems and second-life use

EV & Battery Waste in Indonesia – Current Condition

- Rising EV Adoption → Rapid growth in electric motorcycles and public fleets
- No Domestic Lithium Resources \rightarrow Indonesia lacks natural lithium deposits
- Battery Waste as a Strategic Resource → End-of-life batteries can be recycled to recover lithium and other critical metals
- Recycling Infrastructure Still Limited → Few facilities for safe, efficient EV battery recycling
- LCA as a Guiding Tool → Life Cycle Assessment supports better planning for recycling systems

Improving Battery Waste Recycling in Indonesia

- Develop Local Recycling Facilities → Invest in safe, scalable lithium-ion battery recycling plants
- Establish Clear Regulations & Standards → Implement extended producer responsibility (EPR) policies
- Strengthen Industry & Government Collaboration → Foster public-private partnerships for recycling infrastructure
- Build a National Collection System → Involve OEMs, dealers, and waste management services
- Use LCA for Policy & Planning → Apply LCA to evaluate recycling scenarios and prioritize investment

How Can EV LCA Be Improved?

- Better data transparency
- Update models to reflect new battery chemistries and recycling methods
- Adapt LCA models to local electricity grids, sourcing, and regulations
- Integrate real-world usage data (e.g., from smart vehicles)
- Account for second-life batteries and closed-loop recycling
- Promote circular economy
- Involve industry, academia, and policymakers for holistic improvement

The Future of Sustainable EVs

- Cleaner Battery Production → Shift to low-carbon manufacturing and renewable-powered factories
- Circular Economy Integration → Closed-loop systems: reuse, remanufacture, and recycle batteries
- **Greener Supply Chains** → Ethical sourcing and traceability of raw materials
- Smarter LCA Tools → Al-driven, real-time assessments for better design and policy decisions
- Policy & Industry Synergy → Stronger global regulations and public—private collaboration

Summary

- Life Cycle Assessment (LCA) is essential to evaluate the full environmental impact of electric vehicles (EVs) from raw materials to end-of-life.
- EVs offer lower emissions during use, but significant impacts occur during battery production and material extraction.
- Battery recycling and sustainable supply chains are critical to improving the overall sustainability of EVs.
- LCA helps identify trade-offs and supports better design, policy, and innovation decisions.
- Improving LCA tools with better data, regional adaptation, and dynamic modeling will drive smarter, more sustainable EV systems.

Discussion / Q&A

- How green are EVs in your country?
- Share your thoughts and local context.