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Overview

• My education & experiences background
• Part 1: Introduction to Computer Vision

• What is Machine Learning (ML)
• What is Computer Vision (CV)
• Common CV tasks
• Types of learning in ML
• Types of ML model
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Overview

• Part 2: Introduction to Anomaly Detection
• Anomalies
• Anomaly Detection (AD)
• Application of AD
• Challenges of AD
• AD method

• One-class
• Model-based
• Data augmentation-based
• Framework (model + data augmentation)

• Zero-shot
• Summary and food for thought

3



Overview

• Part 3: Anomaly Detection for Battery Monitoring System
• AD for thermal image battery
• Challenges
• One-shot method
• Zero-shot method
• Ongoing challenges
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My education & experiences background
9.2011

9.2015

Undergraduate
• Multimedia Nusantara University, Indonesia
• Thesis topic: embedded system (non-AI topic)

Master
• University of Science and Technology, South Korea
• Research topic: neural network compression (image classification application)

9.2017

3.2023

PhD
• University of Science and Technology, South Korea
• Research topics: anomaly detection for surveillance camera, augmentation, 

domain adaptation, semi-supervised learning

5



My education & experiences background
4.2023

7.2025

Postdoctoral researcher
• Interdisciplinary Centre for Security, Reliability and Trust (SnT),  University of Luxembourg, 

Luxembourg
• Research topic: audio-visual/audio/visual deepfake detector, 

[from October 2024] battery SoX prediction & battery thermal image anomaly detection

AI research consultant
• Helmholtz AI, Germany
• Research topic: AI in health
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What is Machine Learning (ML)

• Computer learns from data
• Data may/may not provide ground truth
• ML model is the processor from input to output
• Loss is the objectives (what ML model should learn from the data?)

8

Data ML ModelInput Output Loss Ground truth/label



What is Computer Vision (CV)

• ML to process visual data (image/video)

Non-ML CV (Sobel edge detection, etc.) exists, but not our focus9

Data ML Model Output Loss Ground truth/label



Common CV tasks

• Image/video classification
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“4”

“2”

Handwritten digit classification Action classification

“dancing”

“shaking hands”



Common CV tasks

• Image/video classification
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“normal”

“anomaly”

Anomaly detection



Common CV tasks

• Object detection

12
Image source: https://www.augmentedstartups.com/blog/how-to-implement-object-detection-using-deep-learning-a-step-by-step-guide



Common CV tasks

• Segmentation

13
Image source: https://medium.com/visionwizard/object-segmentation-4fc67077a678, https://paperswithcode.com/task/brain-tumor-segmentation

Brain tumor (anomaly) 
segmentation

Object segmentation



Common CV tasks

• Tracking
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Image source: https://www.comet.com/site/blog/an-introduction-to-object-tracking-in-computer-vision/



Common CV tasks

• Pose estimation
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Types of learning in ML

• Supervised learning
• Using label/ground truth to train the model

But labels are expensive!
Especially labels that require expertise 17

Model “dog”

Loss function

Wrong! It’s 
a “cat”

Ground truth



Types of learning in ML

• Semi-supervised learning
• Train using small amount of labeled data + huge amount of unlabeled 

data
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Pseudo-label

Image credits: https://amitness.com/2020/07/semi-supervised-learning/



Types of learning in ML

• Weakly-supervised learning
• Using lower quality/cheaper labels
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Action localization Object detection

Fully 
supervised

Weakly 
supervised

Label: cat, dog

cat

dog

Source: Nguyen, P.X., Ramanan, D. and Fowlkes, C.C., 2019. Weakly-supervised action localization with background modeling. In Proceedings of the IEEE/CVF 
international conference on computer vision (pp. 5502-5511).



Types of learning in ML

• Unsupervised learning
• No labels in the training data

• Labels can be generated automatically from the input (self-supervised learning)
• Can be combined with supervised learning in the 2nd stage of training

20Source: Gidaris, S., Singh, P. and Komodakis, N., 2018. Unsupervised Representation Learning by Predicting Image Rotations. In 6th International Conference on 
Learning Representations (ICLR 2018).



Types of learning in ML

• Few-shot learning
• Recognizing new class with only few amount of labeled data

21

New class (1 data):

Source: Koch, G., Zemel, R. and Salakhutdinov, R., 2015, July. Siamese neural networks for one-shot image recognition. In ICML deep learning workshop (Vol. 
2, No. 1, pp. 1-30).



Types of learning in ML

• Zero-shot learning
• Training with other tasks than the test
• For example, Contrastive Language-Image Pretraining (CLIP):
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This is a very 
cute cat

Language 
extractor

Vision 
extractor

Language 
feature

Vision 
feature

• Closer if caption-
image match

• Farther if not

A photo of dog
A photo of cat
A photo of bird

…

Language 
extractor

Vision 
extractor

Language feature dog

Vision 
feature

Language feature cat

Language feature …

Language feature bird

Closer to 
which one?

Training with image-caption pairs Zero-shot for image classification

Source: Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.  and Krueger, G., 2021, July. Learning 
transferable visual models from natural language supervision. In International conference on machine learning (pp. 8748-8763). PmLR.



Types of learning in ML

• One-class classification
• Specific to anomaly detection → will discuss later
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Types of learning in ML

• Reinforcement learning
• Learning by interacting with

environment

24
Image source: https://fritz.ai/introduction-to-reinforcement-learning/, https://www.odinschool.com/blog/top-100-reinforcement-learning-real-life-examples-and-its-challenges



Types of ML models

• Deep learning
• Neural network model 

(inspired by neural system)

25
Image source: Wang, S. and Cao, J., 2021. AI and deep learning for urban computing. Urban informatics, pp.815-844.

• Traditional ML
• Feature (e.g. edge, blobs) 

are mostly hand-crafted
• Non-neural network model
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Anomalies

• Different from normal pattern
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Anomalies

• Different from normal pattern + have unlimited varieties
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Anomalies

29

Normal data 



Anomalies
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Normal data 
Anomalous data



Anomaly Detection (AD)

• Normal / not normal classification

Normal data 
Anomalous data
Decision boundary
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Anomaly Detection (AD)

• Normal / not normal classification

32

AD model Normal/anomalyData



Applications of AD

• Defect detection

Can have unlimited 
number of defect 

types

defect
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Applications of AD

• Surveillance

34

Can have unlimited 
number of 

anomalous behavior



Applications of AD

• Medical

35

Can have unlimited 
number of disease



Applications of AD

• Deepfake detection

36

Real (normal) Fake (anomaly)
Can be made by unlimited 

number of generative methods



Challenges of AD

• Anomalous data is difficult to get
• Quantity-wise
• Variety-wise

37

Escaping Puma
(video not found) … etc.

e.g. in surveillance



Challenges of AD

• Supervised learning is difficult
• Possible application with supervised learning: 

Deepfake detection → can easily create fake data with available 
generative models

38

Fake
(anomaly)

Real
(normal)

DeepFake 
Detector

Training set

Real/fake

Generative 
methods



Challenges of AD

• Supervised learning is difficult
• Possible application with supervised learning: Deepfake detection

• BUT! Even when we have quantity, the variety may not be enough for 
generalization to unseen fake

39
NormalAnomaly

Normal
Anomaly

Unseen anomaly

Decision boundary

Unseen anomaly can be classified 
incorrectly
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AD method

• One-class
• Training with only normal data
• Some papers claim as “unsupervised” (although I disagree)

• Zero-shot
• no training on anomaly detection task

• Weakly-supervised
• Semi-supervised
• Unsupervised

41

Will not be discussed in this lecture



AD method: one-class

• Model
• How to train with only one-class (normal) data

• Data augmentation
• How to add more data to train (especially anomalies)

• Framework: model + data augmentation
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AD method: one-class: model

• Training with only normal data

43

Normal
Decision boundary

Normal

Anomaly



AD method: one-class: model

• Training with only normal data

44

Normal
Decision boundary

Unseen anomaly

At test,



AD method: one-class: model

• Example #1: Autoencoder (AE) trained to reconstruct normal data

45Source: Hasan, M., Choi, J., Neumann, J., Roy-Chowdhury, A.K. and Davis, L.S., 2016. Learning temporal regularity in video sequences. In Proceedings of the IEEE 
conference on computer vision and pattern recognition (pp. 733-742).

Problem: AE can reconstruct too well, including anomaly that was not seen during training
→ Need constrain

Expectation during test
Normal: low reconstruction loss
Anomaly: high reconstruction loss



AD method: one-class: model

• Example #2: Variational AE (AE but the latent is constrained to 
Gaussian distribution)

46Source: Khalid, H. and Woo, S.S., 2020. Oc-fakedect: Classifying deepfakes using one-class variational autoencoder. In Proceedings of the IEEE/CVF conference on 
computer vision and pattern recognition workshops (pp. 656-657).



AD method: one-class: model

• Example #3: AE + memory module 
• Forcing the decoder to reconstruct only based on limited normal memory

47Source: Gong, D., Liu, L., Le, V., Saha, B., Mansour, M.R., Venkatesh, S. and Hengel, A.V.D., 2019. Memorizing normality to detect anomaly: Memory-augmented deep 
autoencoder for unsupervised anomaly detection. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 1705-1714).



AD method: one-class: model

• Example #4: predicting next frame (more difficult task than 
reconstruction)

• During test, if the next frame can’t be predicted well → anomaly

48Source: Liu, W., Luo, W., Lian, D. and Gao, S., 2018. Future frame prediction for anomaly detection–a new baseline. In Proceedings of the IEEE conference on computer 
vision and pattern recognition (pp. 6536-6545). 



AD method: one-class: model

• Example #5: Deep SVDD (Deep Support Vector Data Description)
• Forcing normal data to be inside a hypersphere
• During test time → data outside hypersphere = anomaly

49Source: Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Müller, E. and Kloft, M., 2018, July. Deep one-class classification. 
In International conference on machine learning (pp. 4393-4402). PMLR.



AD method: one-class: data augmentation

• Pseudo anomaly
• Difficult to obtain anomalies? → create them!

50

Generating 
pseudo 

anomalyNormal 
data

Pseudo 
anomaly

Normal data Pseudo anomalies
Image source: Zaheer, M.Z., Lee, J.H., Mahmood, A., Astrid, M. and Lee, S.I., 2022. Stabilizing adversarially learned one-class novelty detection using pseudo 
anomalies. IEEE Transactions on Image Processing, 31, pp.5963-5975.



AD method: one-class: data augmentation

• Pseudo anomaly
• Benefit to one-class model → tightening decision boundary

51Normal Decision boundaryUnseen anomaly Pseudo anomaly

Without pseudo anomaly With pseudo anomaly

Problem: Nothing limiting the decision boundary



AD method: one-class: data augmentation

• Pseudo anomaly
• Better pseudo-anomaly should be closer to normal data

52

Better pseudo anomalies Not-so-good pseudo anomalies

Tight to the normal data

Normal Decision boundaryUnseen anomaly Pseudo anomaly



AD method: one-class: data augmentation

• Pseudo anomaly generation
• Example #1: Undertrained autoencoder/generator + fusion 

53Source: Muhammad Zaigham Zaheer, Jin-ha Lee, Marcella Astrid, and Seung-Ik Lee. "Old is Gold: Redening the adversarially learned one-class classier training 
paradigm". In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 14-19, 2020.



AD method: one-class: data augmentation

• Pseudo anomaly generation
• Example #2: Skipping frames

• Using prior knowledge, e.g., anomalies in surveillance are related to speed
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AD method: one-class: data augmentation

• Pseudo anomaly generation
• Example #3: creating patch from another dataset

• Using prior knowledge, e.g., anomalous objects
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AD method: one-class: data augmentation

• Pseudo anomaly generation
• Example #4: fuse 2 normal to create anomalous shape

56Source: Marcella Astrid, Muhammad Zaigham Zaheer, and Seung-Ik Lee. "PseudoBound: Limiting the anomaly reconstruction capability of one-class 
classifiers using pseudo anomalies". Neurocomputing 534 (2023):147-160.



AD method: one-class: data augmentation

• Pseudo anomaly generation
• Example #5: Adding noise

• Potential problem: noisy normal input

57Source: Marcella Astrid, Muhammad Zaigham Zaheer, and Seung-Ik Lee. "PseudoBound: Limiting the anomaly reconstruction capability of one-class 
classifiers using pseudo anomalies". Neurocomputing 534 (2023):147-160.



AD method: one-class: data augmentation

• Pseudo anomaly 
generation

• Example #6: 
Learnable noise – 
exploiting 
autoencoder’s 
weakness, i.e., 
reconstruct 
anomalies too well

58Source: Marcella Astrid, Muhammad Zaigham Zaheer, and Seung-Ik Lee. " Exploiting autoencoder’s weakness to generate pseudo anomalies". Neural 
Computing and Applications, 36(23), pp.14075-14091.



AD method: one-class: data augmentation

• Pseudo anomaly generation
• Example #6: Learnable noise – exploiting autoencoder’s weakness, i.e., 

reconstruct anomalies too well
• How it works intuitively

59Source: Marcella Astrid, Muhammad Zaigham Zaheer, and Seung-Ik Lee. " Exploiting autoencoder’s weakness to generate pseudo anomalies". Neural 
Computing and Applications, 36(23), pp.14075-14091.

Generate pseudo 
anomaly

Generate pseudo 
anomaly

Autoencoder learns 
not to reconstruct 
pseudo anomaly

Autoencoder learns 
not to reconstruct 
pseudo anomaly



AD method: one-class: data augmentation

• Pseudo anomaly generation
• Example #6: Learnable noise – exploiting autoencoder’s weakness, i.e., 

reconstruct anomalies too well
• Better than non-learnable noise → Higher quality pseudo-anomalies (closer to normal) 

are better

60Source: Marcella Astrid, Muhammad Zaigham Zaheer, and Seung-Ik Lee. " Exploiting autoencoder’s weakness to generate pseudo anomalies". Neural 
Computing and Applications, 36(23), pp.14075-14091.

non-learnable 
noise 



AD method: one-class: data augmentation

• Pseudo anomaly generation
• Example #7: Blended Image (BI) - Combining 2 normal data

• Prior knowledge: face swap to create deepfake

61

Pseudo anomaly

Source: Li, L., Bao, J., Zhang, T., Yang, H., Chen, D., Wen, F. and Guo, B., 2020. Face x-ray for more general face forgery detection. In Proceedings of the IEEE/CVF 
conference on computer vision and pattern recognition (pp. 5001-5010).



AD method: one-class: data augmentation

• Pseudo anomaly generation
• Example #8: Self-Blended Image (SBI) - combining 2 same normal data 

62

Higher quality pseudo-anomalies (closer to 
normal) are better:

Source: Shiohara, K. and Yamasaki, T., 2022. Detecting deepfakes with self-blended images. In Proceedings of the IEEE/CVF Conference on Computer Vision 
and Pattern Recognition (pp. 18720-18729).



AD method: one-class: data augmentation

• Pseudo anomaly generation
• Example #9: Create temporal and spatial inconsistencies, mimicking 

video deepfakes

63Source: Wang, Z., Bao, J., Zhou, W., Wang, W. and Li, H., 2023. AltFreezing for More General Video Face Forgery Detection. In Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern Recognition (pp. 4129-4138).

Pseudo-anomaly

Temporal Spatial



AD method: one-class: data augmentation

• Pseudo anomaly generation
• Example #10: modify only part of face, instead of whole face

64Source: Mejri, N., Ghorbel, E. and Aouada, D., 2023, June. UNTAG: Learning Generic Features for Unsupervised Type-Agnostic Deepfake Detection. In ICASSP 2023-
2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1-5). IEEE.

Pseudo-anomaly



AD method: one-class: data augmentation

• Pseudo anomaly generation
• Example #11:

65Source: Li, C.L., Sohn, K., Yoon, J. and Pfister, T., 2021. Cutpaste: Self-supervised learning for anomaly detection and localization. In Proceedings of the 
IEEE/CVF conference on computer vision and pattern recognition (pp. 9664-9674).



AD method: one-class: framework

• Example #1: well-reconstruct normal, poorly-reconstruct pseudo 
anomaly
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Minimize reconstruction loss 
Normal input 𝑋𝑁 Normal reconstruction ෠𝑋𝑁

Pseudo anomaly reconstruction ෠𝑋𝑃Pseudo anomaly input 𝑋𝑃

Autoencoder (AE)

Encoder (ℰ) Decoder (𝒟)

1 − 𝑝

Pseudo anomaly 
generator
ℱ(𝑋𝑁, 𝐸)

…

Maximize reconstruction loss

𝑝
…

……

Auxiliary component 𝐸

Source: Marcella Astrid, Muhammad Zaigham Zaheer, and Seung-Ik Lee. “Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection”. In: 
International Conference on Computer Vision (ICCV 2021) Workshop (Virtual). Oct. 11–17, 2021.



AD method: one-class: framework

• Example #2: Learn to reconstruct only normal regardless the input 
(normal & pseudo anomaly)

67

Minimize reconstruction loss 
Normal input 𝑋𝑁 Normal reconstruction ෠𝑋𝑁

Pseudo anomaly reconstruction ෠𝑋𝑃Pseudo anomaly input 𝑋𝑃

Autoencoder (AE)

Encoder (ℰ) Decoder (𝒟)

1 − 𝑝

Pseudo anomaly 
generator
ℱ(𝑋𝑁, 𝐸)

…

Minimize reconstruction loss 

𝑝
…

……

Auxiliary component 𝐸

Source: Marcella Astrid, Muhammad Zaigham Zaheer, Jae-Yeong Lee, and Seung-Ik Lee. “Learning Not to Reconstruct Anomalies”. In: British Machine Vision 
Conference 2021 (BMVC2021) (Virtual). Nov. 22–25, 2021.



AD method: one-class: framework

• Example #3: binary classifier between normal and pseudo-
anomaly

68Source: Muhammad Zaigham Zaheer, Jin-ha Lee, Marcella Astrid, and Seung-Ik Lee. "Old is Gold: Redening the adversarially learned one-class classier training 
paradigm". In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 14-19, 2020.



AD method: zero-shot

• Example #1: using Visual-Question-Answering (VQA) model

69Source: Zhang, J., He, H., Chen, X., Xue, Z., Wang, Y., Wang, C., Xie, L. and Liu, Y., 2024, August. Gpt-4v-ad: Exploring grounding potential of vqa-oriented gpt-4v for zero-
shot anomaly detection. In International Joint Conference on Artificial Intelligence (pp. 3-16). Singapore: Springer Nature Singapore.



AD method: zero-shot

• Example #2: using CLIP

70

A photo of flawless circuit

Language 
extractor

Vision 
extractor

Language normal 1

Vision 
feature

Language normal 2

Language anomaly 2

Language anomaly 1

Closer to 
which one?

A photo of perfect circuit
A photo of damaged circuit

A photo of broken circuit

Source: Jeong, J., Zou, Y., Kim, T., Zhang, D., Ravichandran, A. and Dabeer, O., 2023. Winclip: Zero-/few-shot anomaly classification and segmentation. 
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 19606-19616).
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Summary

• Anomalies are difficult to collect
• Rare
• Unlimited possibilities

• Method
• One class

• Model: AE, VAE, …
• Data: pseudo anomaly

• Near normal data should be better
• Hybrid

• Zero-shot
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Food for thought

• How much closer to normal data should be the pseudo anomaly?
• TOO close to normal data → more false positives (normal data detected 

as anomaly)
• TOO far from normal data → not that helpful

73

Good Bad

Normal Anomaly

Spectrum of pseudo-anomaly quality

When is it TOO good or bad?



Food for thought

• Unseen normal
• The analogy
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Food for thought

• Unseen normal
• The analogy

75

Me who just moved to 
Korea from Indonesia

I don’t know 
this is 

normal?!



Food for thought

• Unseen normal
• Applications: new environment

76

Vehicles are normal on the street Vehicles are anomalous in the house



Food for thought

• Unseen normal
• Applications: compressed/noisy data
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Food for thought

• What is anomaly/normal anyway?
• New normal, the analogy

78

Normal before covid
Anomalous during covid

Normal during covid



Food for thought

• What is anomaly/normal anyway?
• Rare normal, the analogy
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Overview
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• Ongoing challenges
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AD for BMS

• AD for battery monitoring system (BMS) with thermal image
• For safe battery usage
• Even though, in reality, currently we don’t have a way how to put thermal camera in the BMS system 

81

AD model Normal/anomaly



Challenges in AD for thermal image battery

• (Same problem as AD) Anomalous data is difficult to get
• Safety reason

82
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One-class + pseudo anomaly AD for thermal 
image battery
• Binary classifier + feature-level pseudo-anomaly

• Method

84Source: Shabayek, A., Rathinam, A., Ruthven, M., Aouada, D. and Amietszajew, T., 2025. AI-enabled thermal monitoring of commercial (PHEV) Li-ion pouch cells with 
Feature-Adapted Unsupervised Anomaly Detection. Journal of Power Sources, 629, p.235982.

Adding noise



One-class + pseudo anomaly AD for thermal 
image battery
• Binary classifier + feature-level pseudo-anomaly

• Results (one-class)

85Source: Shabayek, A., Rathinam, A., Ruthven, M., Aouada, D. and Amietszajew, T., 2025. AI-enabled thermal monitoring of commercial (PHEV) Li-ion pouch cells with 
Feature-Adapted Unsupervised Anomaly Detection. Journal of Power Sources, 629, p.235982.

Too many perfect results from many 
methods.
• Is the dataset too easy?
• Do complicated method 

necessary?



One-class + pseudo anomaly AD for thermal 
image battery
• Binary classifier + feature-level pseudo-anomaly

• Dataset
• Test dataset is representative enough for real anomalies? 

• There can be more anomalies that are more subtle than anomalies in this test data
• Normal in this dataset can be anomaly depending on context (e.g. in time domain)

86Source: Shabayek, A., Rathinam, A., Ruthven, M., Aouada, D. and Amietszajew, T., 2025. AI-enabled thermal monitoring of commercial (PHEV) Li-ion pouch cells with 
Feature-Adapted Unsupervised Anomaly Detection. Journal of Power Sources, 629, p.235982.

(a) Normal (b) Overheating (c) Reflection (d) Spatial tape

Training: 160 images
Test:  27 images

Test:  13 images Test:  12 images Test: 8 images



One-class + pseudo anomaly AD for thermal 
image battery
• Binary classifier + feature-level pseudo-anomaly

• Results (unsupervised)
• But the method is not specifically

built for noisy data
(Why does the model robust
to noisy data?)

87Source: Shabayek, A., Rathinam, A., Ruthven, M., Aouada, D. and Amietszajew, T., 2025. AI-enabled thermal monitoring of commercial (PHEV) Li-ion pouch cells with 
Feature-Adapted Unsupervised Anomaly Detection. Journal of Power Sources, 629, p.235982.



Zero-shot AD for thermal image battery

• Using VQA model with prior knowledge of normal battery
• Method

88Source: Marcella Astrid, Abdelrahman Shabayek, and Djamila Aouada. "Zero-Shot Anomaly Detection in Battery Thermal Images Using Visual Question Answering 
with Prior Knowledge". In: The 33rd European Signal Processing Conference (EUSIPCO 2025). September 8-12, 2025.



Zero-shot AD for thermal image battery

• Using VQA model with prior knowledge of normal battery
• Results

89

86.6 only using ChatGPT without any training. 
Not so bad, huh?

Source: Marcella Astrid, Abdelrahman Shabayek, and Djamila Aouada. "Zero-Shot Anomaly Detection in Battery Thermal Images Using Visual Question Answering 
with Prior Knowledge". In: The 33rd European Signal Processing Conference (EUSIPCO 2025). September 8-12, 2025.



Overview

• Part 3: Anomaly Detection for Battery Monitoring System
• AD for thermal image battery
• Challenges
• One-shot method
• Zero-shot method
• Ongoing challenges
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Ongoing challenges

• Obtaining representative anomalous data → at least, for test.
• Possible solutions:

• Synthetic but realistic data
• Almost-anomaly as “anomaly”
• Really try exploding batteries, e.g., inside explosion-proof room
• ???
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Real data (normal) Synthetic data (normal)

The heat propagation is not same 
→ can we trust the synthetic data?
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