Anomaly Detection in Computer Vision and Thermal Imaging for Battery Monitoring

Marcella Astrid

Interdisciplinary Centre for Security, Reliability and Trust (SnT)

University of Luxembourg

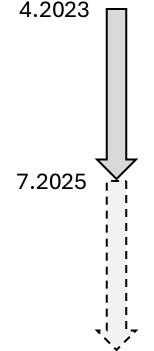
- My education & experiences background
- Part 1: Introduction to Computer Vision
 - What is Machine Learning (ML)
 - What is Computer Vision (CV)
 - Common CV tasks
 - Types of learning in ML
 - Types of ML model

- Part 2: Introduction to Anomaly Detection
 - Anomalies
 - Anomaly Detection (AD)
 - Application of AD
 - Challenges of AD
 - AD method
 - One-class
 - Model-based
 - Data augmentation-based
 - Framework (model + data augmentation)
 - Zero-shot
 - Summary and food for thought

- Part 3: Anomaly Detection for Battery Monitoring System
 - AD for thermal image battery
 - Challenges
 - One-shot method
 - Zero-shot method
 - Ongoing challenges

My education & experiences background

My education & experiences background



Postdoctoral researcher

- Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, Luxembourg
- Research topic: audio-visual/audio/visual deepfake detector, [from October 2024] battery SoX prediction & battery thermal image anomaly detection

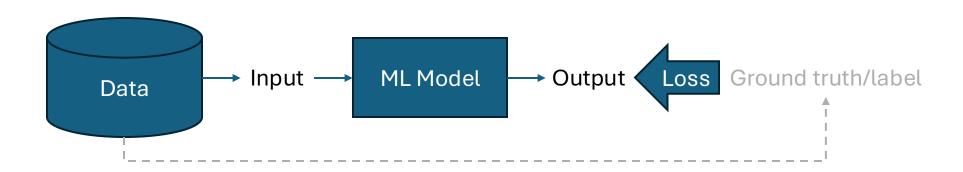
Al research consultant

- Helmholtz AI, Germany
- Research topic: Al in health

- My education & experiences background
- Part 1: Introduction to Computer Vision
 - What is Machine Learning (ML)
 - What is Computer Vision (CV)
 - Common CV tasks
 - Types of learning in ML
 - Types of ML model

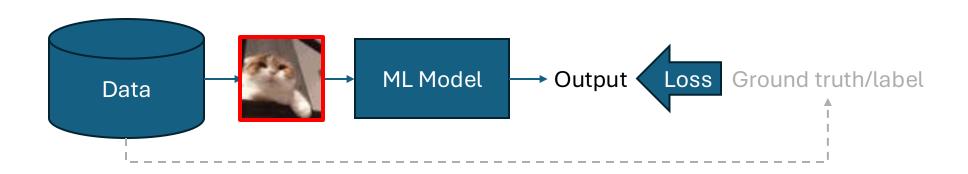
What is Machine Learning (ML)

- Computer learns from data
 - Data may/may not provide ground truth
 - ML model is the processor from input to output
 - Loss is the objectives (what ML model should learn from the data?)



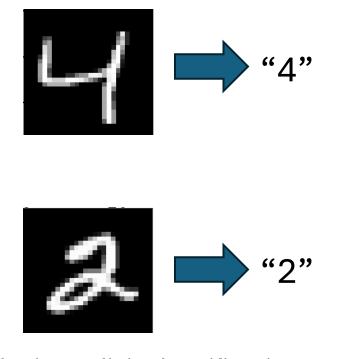
What is Computer Vision (CV)

ML to process visual data (image/video)



Non-ML CV (Sobel edge detection, etc.) exists, but not our focus

Image/video classification



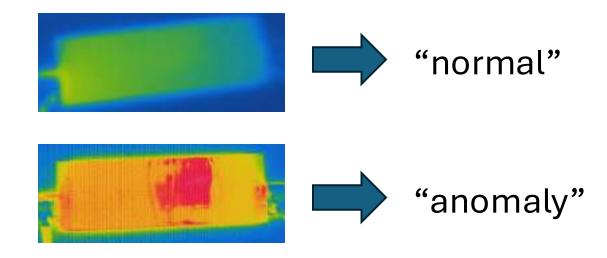
"shaking hands"

"dancing"

Handwritten digit classification

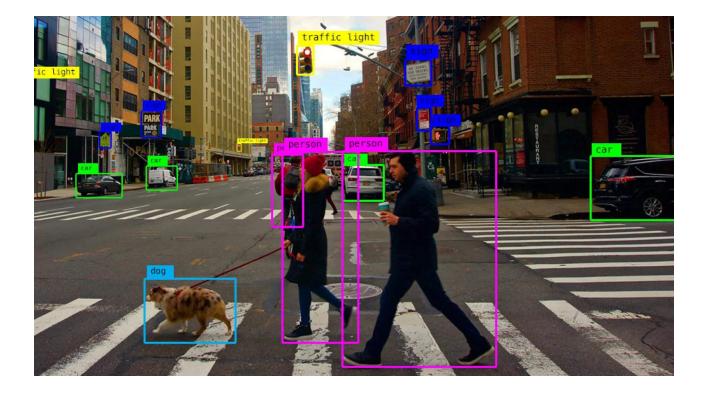
Action classification

• Image/video classification



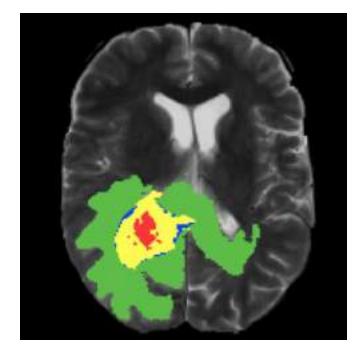
Anomaly detection

Object detection



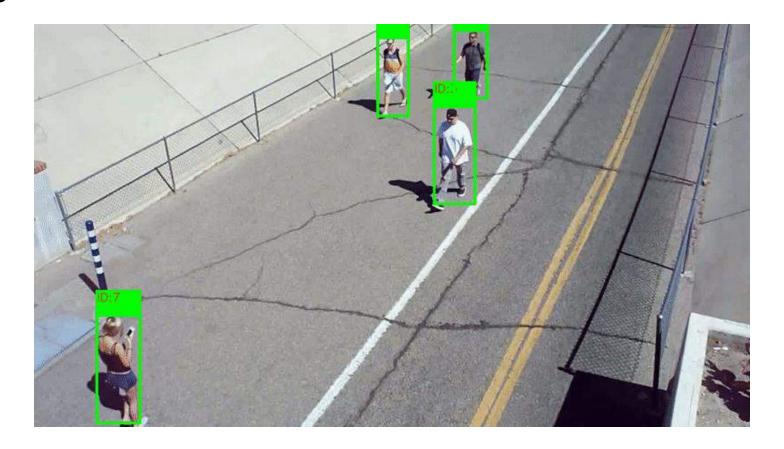
Segmentation

Object segmentation



Brain tumor (anomaly) segmentation

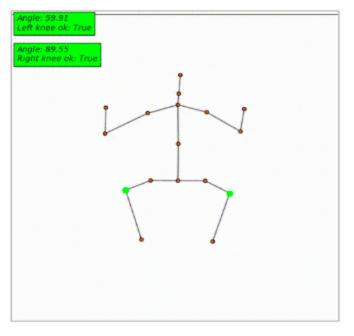
Tracking



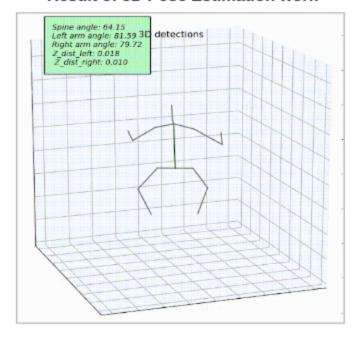
Pose estimation

Original image

Result of 2D Pose Estimation work



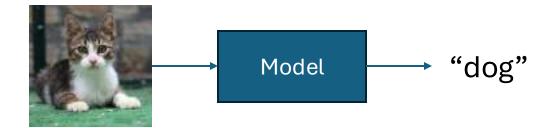
Result of 3D Pose Estimation work



- My education & experiences background
- Part 1: Introduction to Computer Vision
 - What is Machine Learning (ML)
 - What is Computer Vision (CV)
 - Common CV tasks
 - Types of learning in ML
 - Types of ML model

Supervised learning

• Using label/ground truth to train the model



Loss function

But labels are expensive!

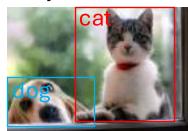
- Semi-supervised learning
 - Train using small amount of labeled data + huge amount of unlabeled data

Pseudo-label Cross-Entropy Loss Predicted Label Labeled Model → Image Dog Cat Dog Cat most confident Model → class Unlabeled Dog Cat **Image** Model Dog Cat Dog Cat Predicted Pseudo-label Cross-Entropy Loss

- Weakly-supervised learning
 - Using lower quality/cheaper labels

Object detection

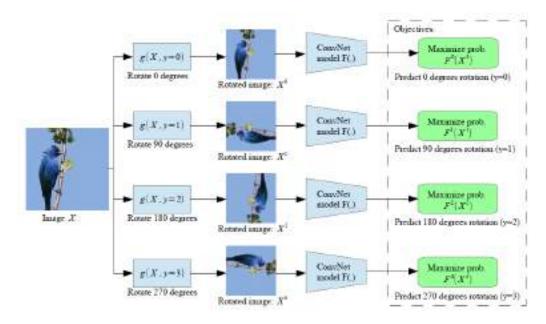
Fully supervised



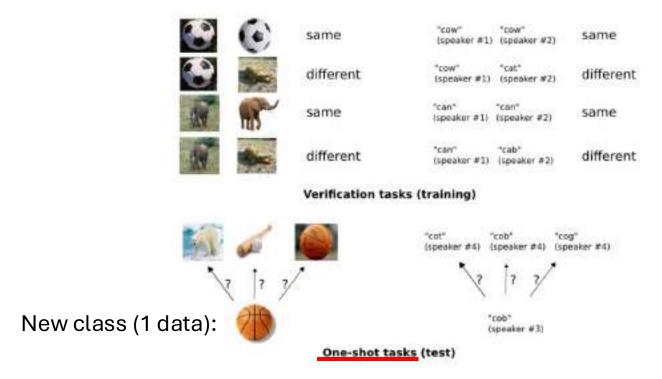
Weakly supervised

Label: cat, dog

- Unsupervised learning
 - No labels in the training data
 - Labels can be generated automatically from the input (self-supervised learning)
 - Can be combined with supervised learning in the 2nd stage of training

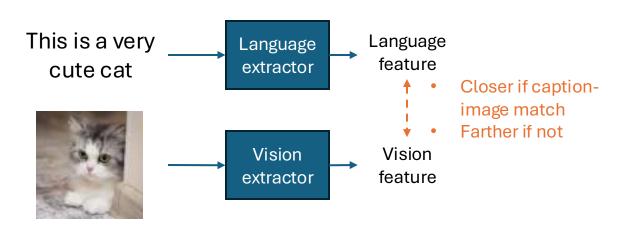


- Few-shot learning
 - Recognizing new class with only few amount of labeled data

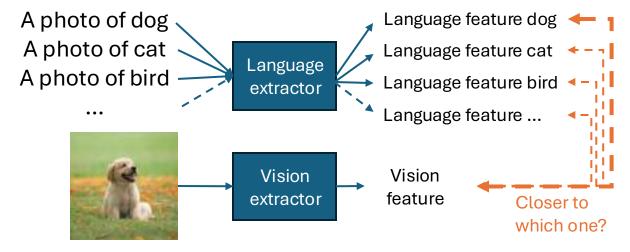


Source: Koch, G., Zemel, R. and Salakhutdinov, R., 2015, July. Siamese neural networks for one-shot image recognition. In *ICML deep learning workshop* (Vol. 2, No. 1, pp. 1-30).

- Zero-shot learning
 - Training with other tasks than the test
 - For example, Contrastive Language-Image Pretraining (CLIP):



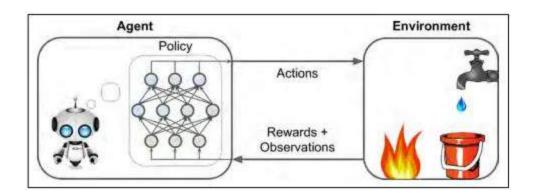
Training with image-caption pairs

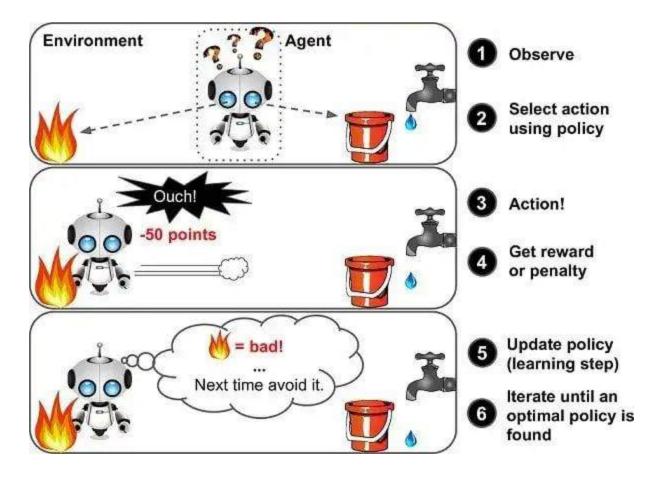


Zero-shot for image classification

- One-class classification
 - Specific to anomaly detection → will discuss later

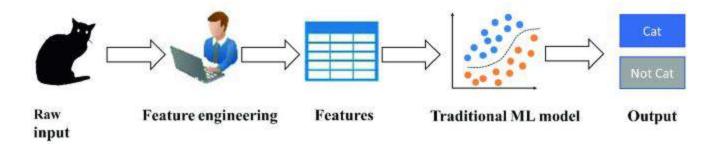
- Reinforcement learning
 - Learning by interacting with environment



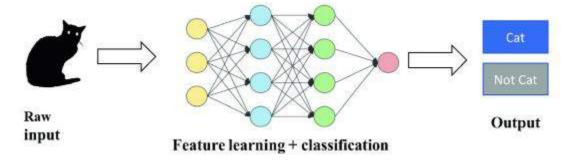


Types of ML models

- Traditional ML
 - Feature (e.g. edge, blobs) are mostly hand-crafted
 - Non-neural network model

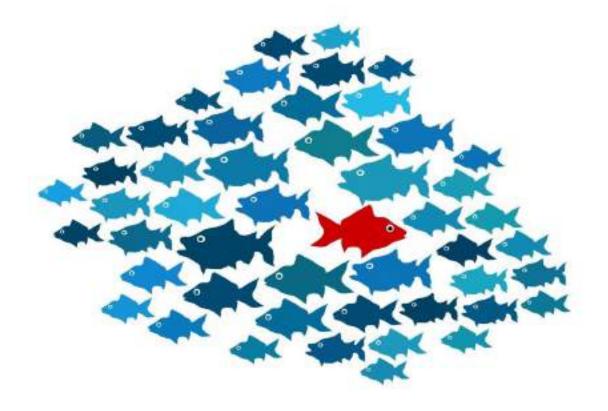


- Deep learning
 - Neural network model (inspired by neural system)

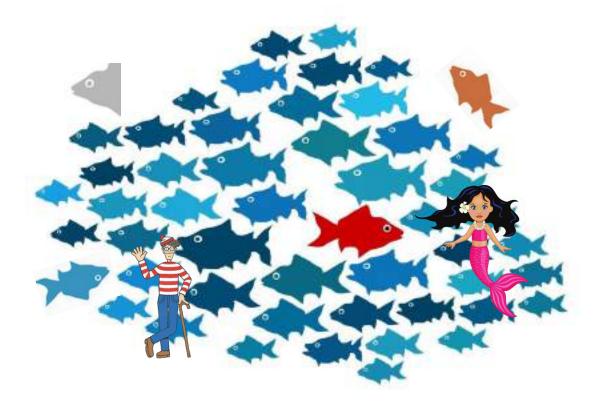


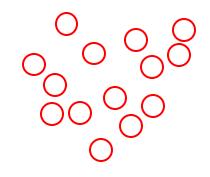
- Part 2: Introduction to Anomaly Detection
 - Anomalies
 - Anomaly Detection (AD)
 - Application of AD
 - Challenges of AD
 - AD method
 - One-class
 - Model-based
 - Data augmentation-based
 - Framework (model + data augmentation)
 - Zero-shot
 - Summary and food for thought

Different from normal pattern

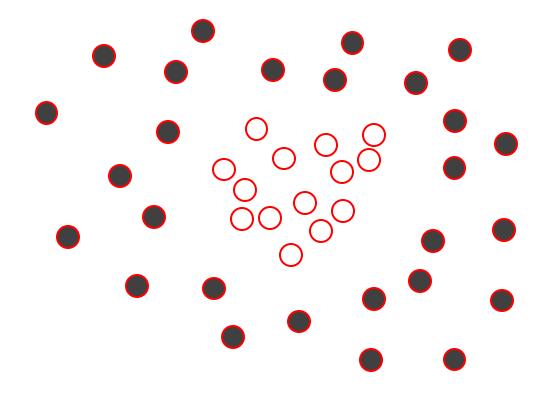


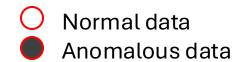
• Different from normal pattern + have unlimited varieties





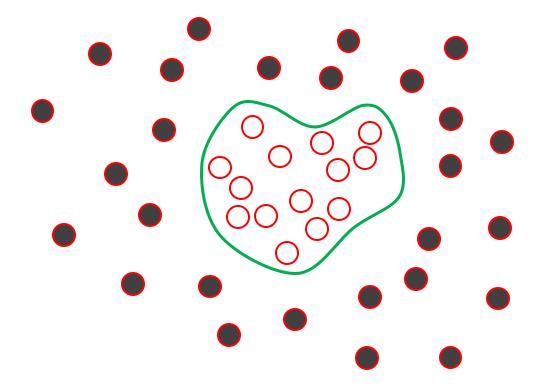
O Normal data

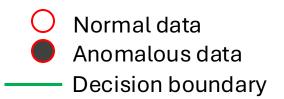




Anomaly Detection (AD)

Normal / not normal classification

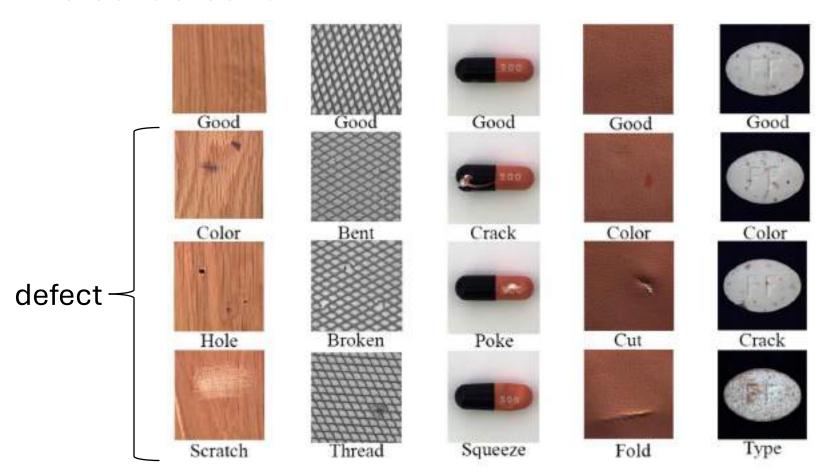




Anomaly Detection (AD)

Normal / not normal classification

Defect detection

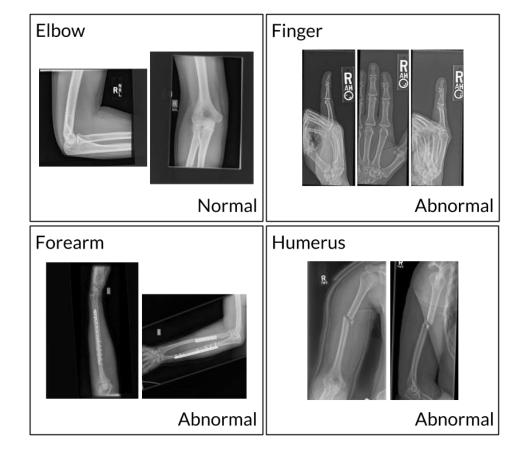


Can have unlimited number of defect types

Surveillance

Can have unlimited number of anomalous behavior

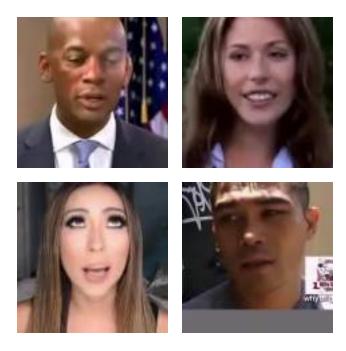
Medical



Can have unlimited number of disease

Deepfake detection

Real (normal)



Fake (anomaly)
Can be made by unlimited number of generative methods

Challenges of AD

- Anomalous data is difficult to get
 - Quantity-wise
 - Variety-wise

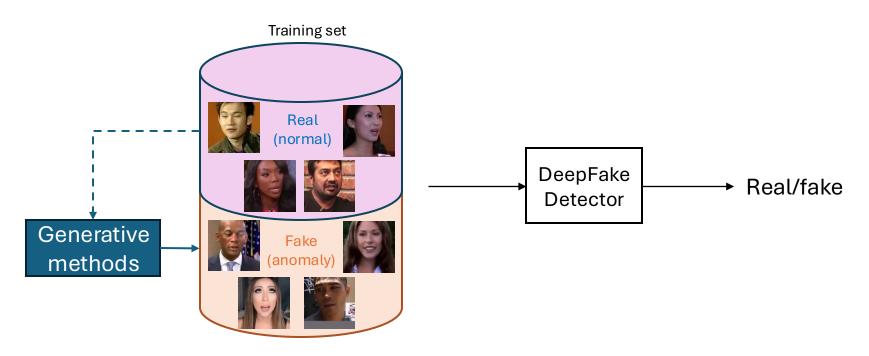
e.g. in surveillance

Escaping Puma (video not found)

... etc.

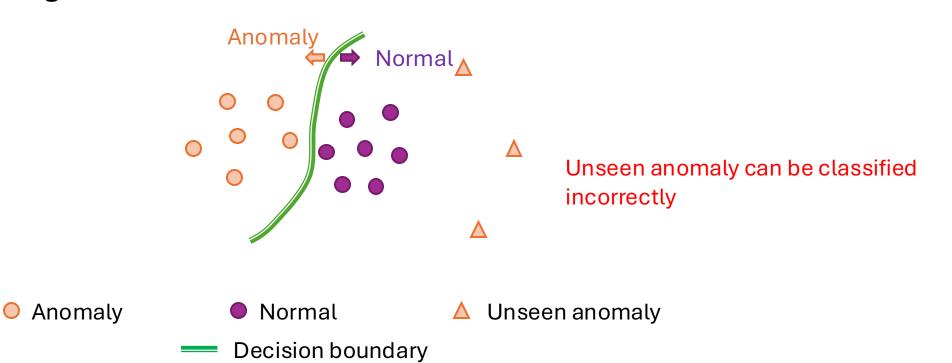
Challenges of AD

- Supervised learning is difficult
 - Possible application with supervised learning:
 Deepfake detection → can easily create fake data with available generative models



Challenges of AD

- Supervised learning is difficult
 - Possible application with supervised learning: Deepfake detection
 - BUT! Even when we have quantity, the variety may not be enough for generalization to unseen fake



Overview

- Part 2: Introduction to Anomaly Detection
 - Anomalies
 - Anomaly Detection (AD)
 - Application of AD
 - Challenges of AD
 - AD method
 - One-class
 - Model-based
 - Data augmentation-based
 - Framework (model + data augmentation)
 - Zero-shot
 - Summary and food for thought

AD method

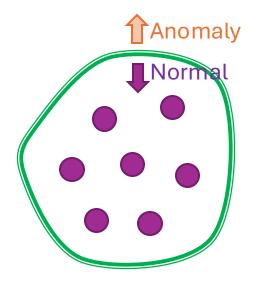
- One-class
 - Training with only normal data
 - Some papers claim as "unsupervised" (although I disagree)
- Zero-shot
 - no training on anomaly detection task
- Weakly-supervised
- Semi-supervised
- Unsupervised

Will not be discussed in this lecture

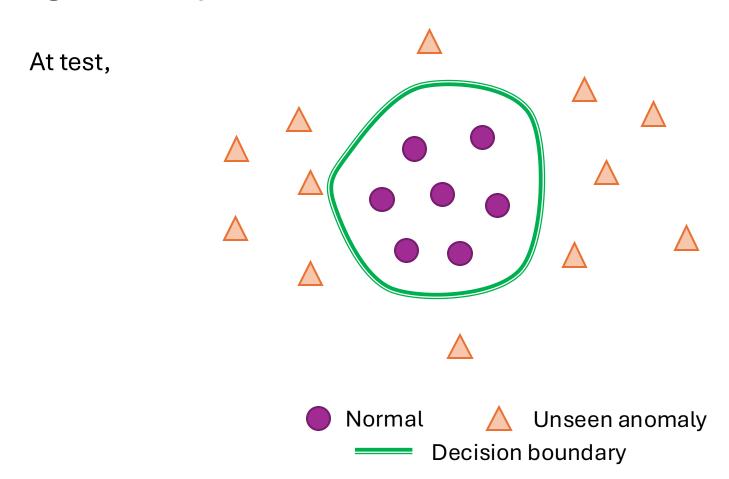
AD method: one-class

- Model
 - How to train with only one-class (normal) data
- Data augmentation
 - How to add more data to train (especially anomalies)
- Framework: model + data augmentation

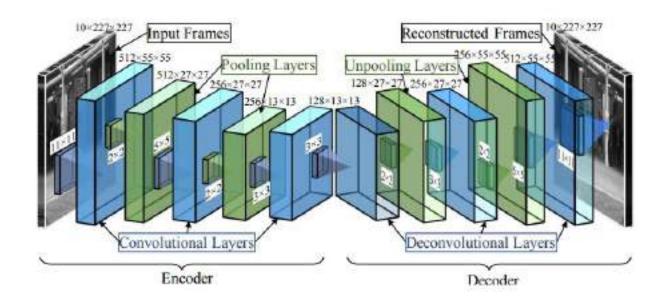
Training with only normal data



Training with only normal data



Example #1: Autoencoder (AE) trained to reconstruct normal data

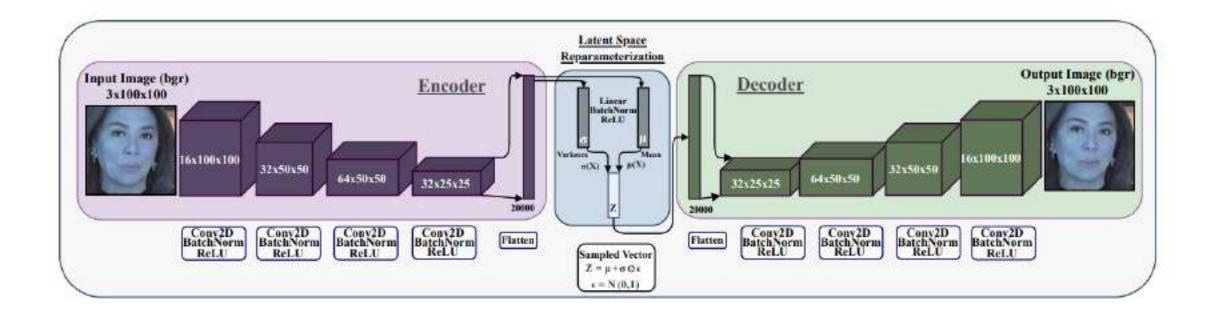


Expectation during test

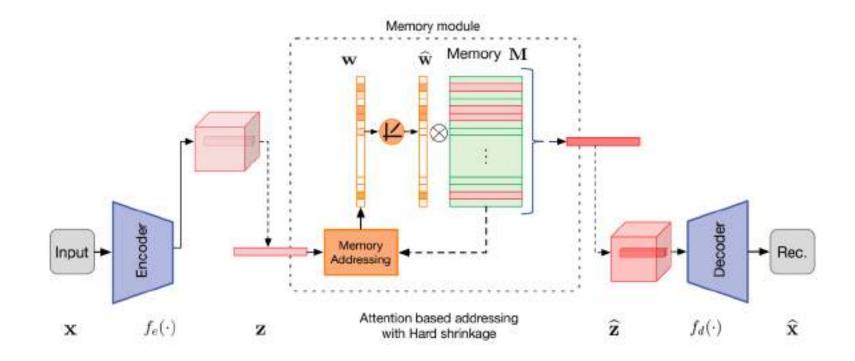
Normal: low reconstruction loss Anomaly: high reconstruction loss

Problem: AE can reconstruct too well, including anomaly that was not seen during training → Need constrain

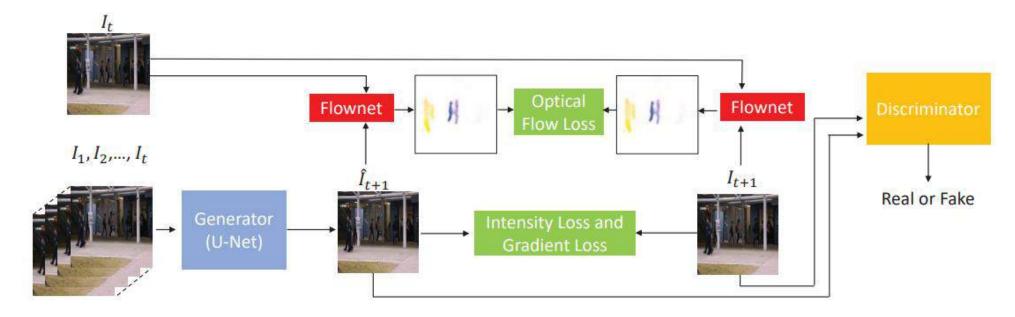
 Example #2: Variational AE (AE but the latent is constrained to Gaussian distribution)



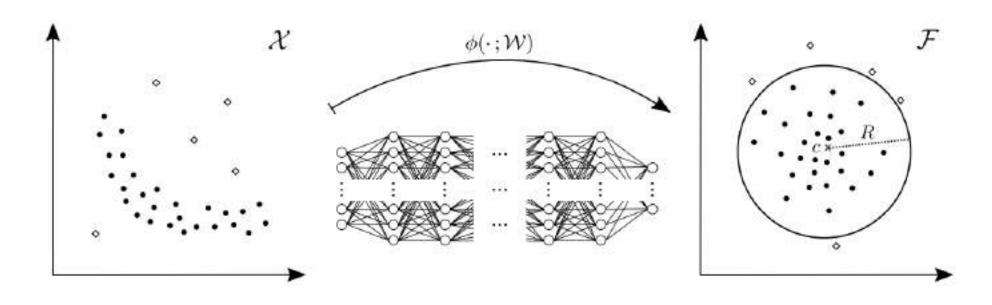
- Example #3: AE + memory module
 - Forcing the decoder to reconstruct only based on limited normal memory



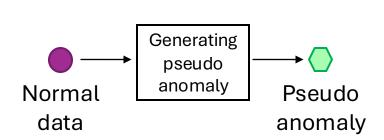
- Example #4: predicting next frame (more difficult task than reconstruction)

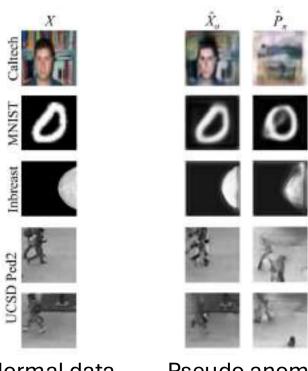


- Example #5: Deep SVDD (Deep Support Vector Data Description)
 - Forcing normal data to be inside a hypersphere
 - During test time \rightarrow data outside hypersphere = anomaly



- Pseudo anomaly
 - Difficult to obtain anomalies? → create them!

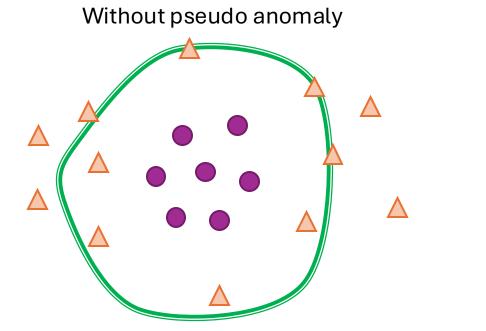




Normal data

Pseudo anomalies

- Pseudo anomaly
 - Benefit to one-class model \rightarrow tightening decision boundary



With pseudo anomaly

Problem: Nothing limiting the decision boundary

▲ Unseen anomaly

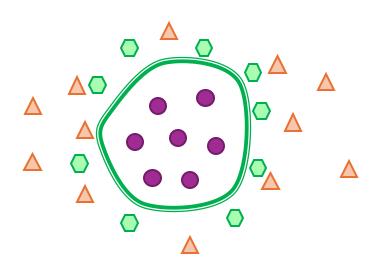
Pseudo anomaly

Pseudo anomaly

Normal

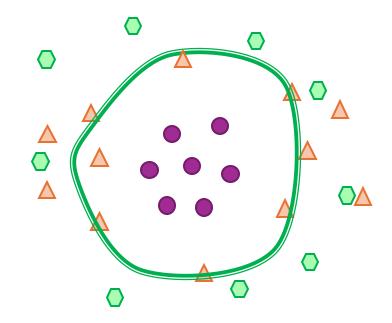
Better pseudo-anomaly should be closer to normal data

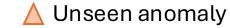
Better pseudo anomalies

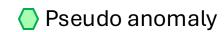


Tight to the normal data

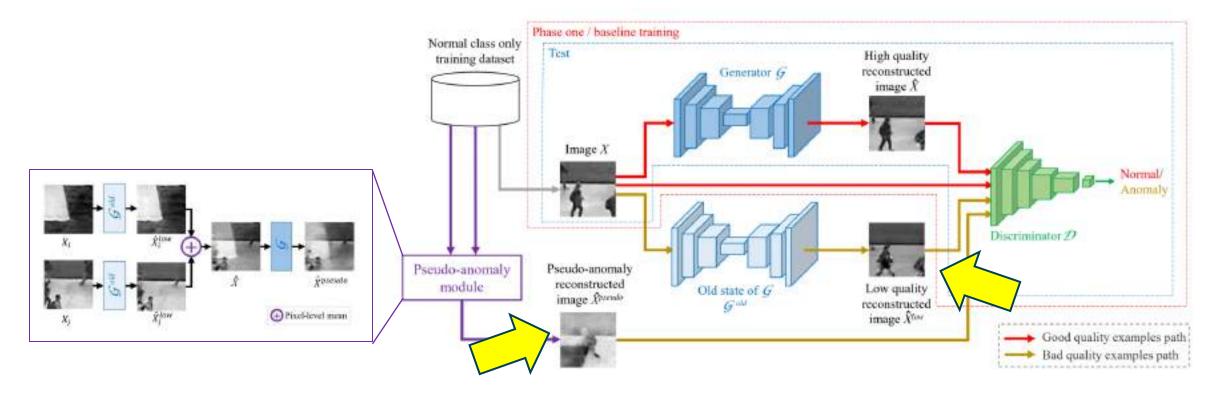
Not-so-good pseudo anomalies



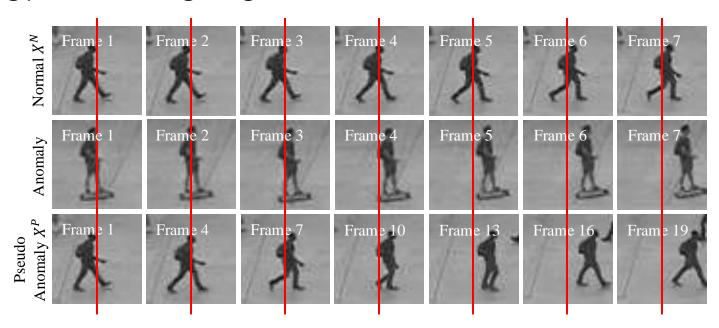




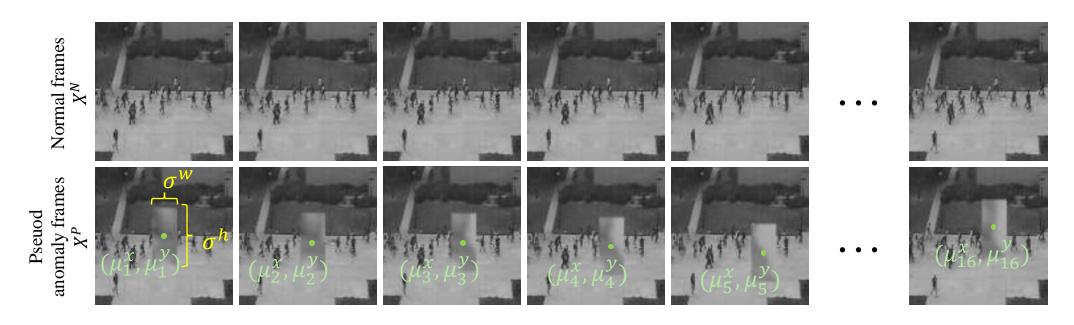
- Pseudo anomaly generation
 - Example #1: Undertrained autoencoder/generator + fusion



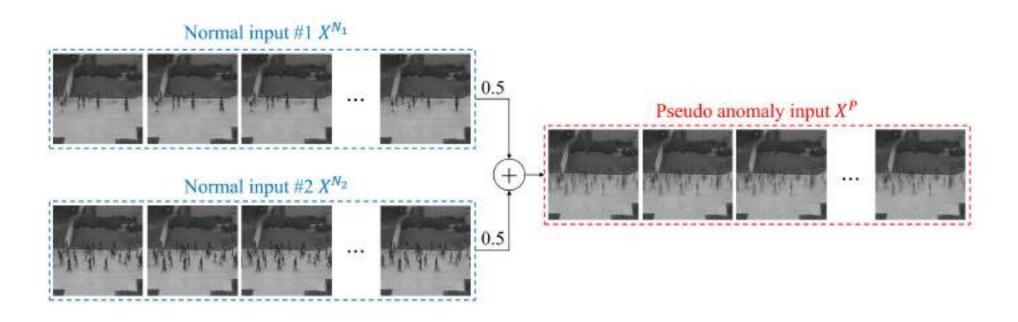
- Pseudo anomaly generation
 - Example #2: Skipping frames
 - Using prior knowledge, e.g., anomalies in surveillance are related to speed



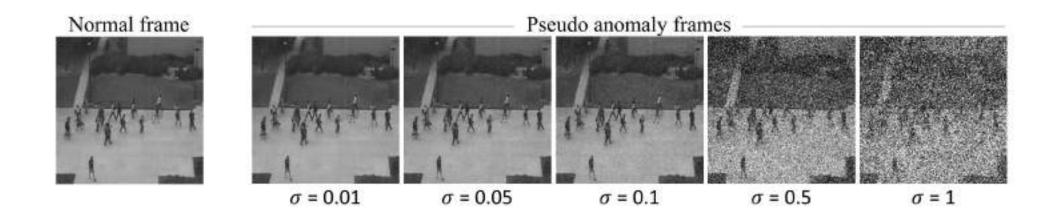
- Pseudo anomaly generation
 - Example #3: creating patch from another dataset
 - Using prior knowledge, e.g., anomalous objects



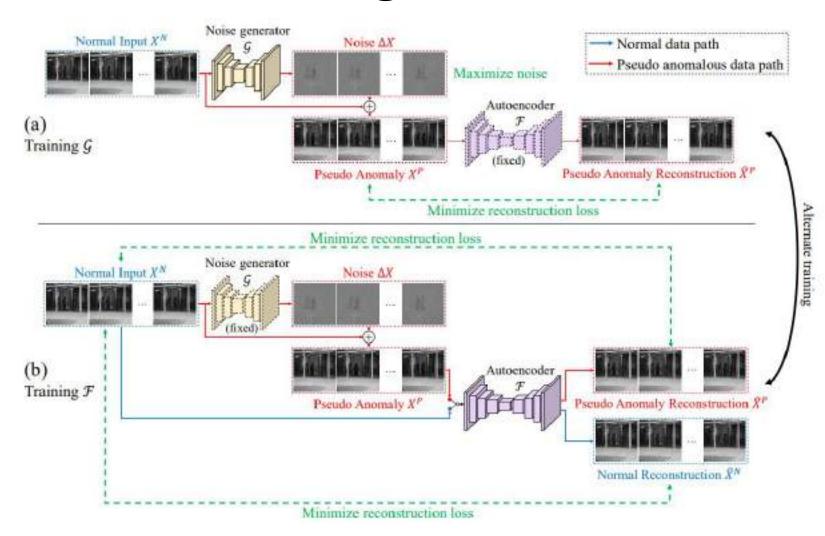
- Pseudo anomaly generation
 - Example #4: fuse 2 normal to create anomalous shape



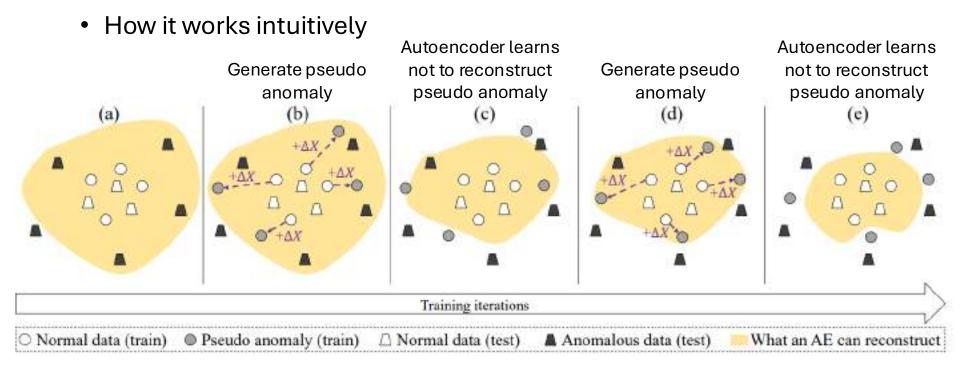
- Pseudo anomaly generation
 - Example #5: Adding noise
 - Potential problem: noisy normal input



- Pseudo anomaly generation
 - Example #6:
 Learnable noise –
 exploiting
 autoencoder's
 weakness, i.e.,
 reconstruct
 anomalies too well



- Pseudo anomaly generation
 - Example #6: Learnable noise exploiting autoencoder's weakness, i.e., reconstruct anomalies too well

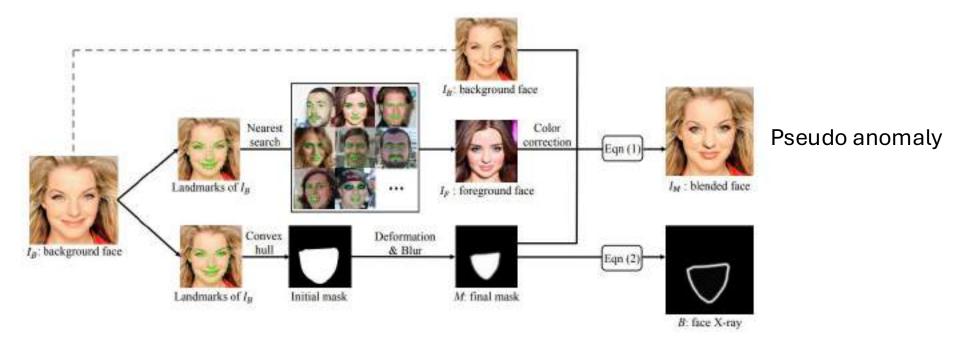


- Pseudo anomaly generation
 - Example #6: Learnable noise exploiting autoencoder's weakness, i.e., reconstruct anomalies too well
 - Better than non-learnable noise → Higher quality pseudo-anomalies (closer to normal) are better

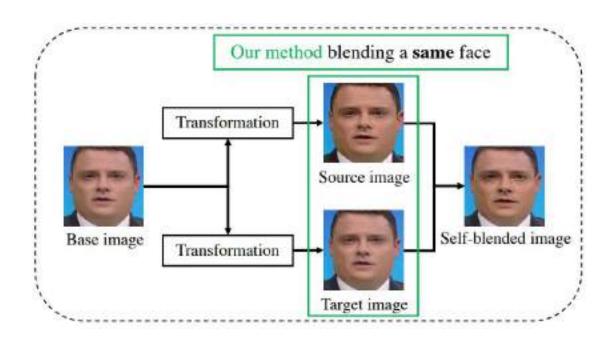
non-learnable _ noise

	Pseudo anomaly	Ped2	Avenue	ShanghaiTech	CIFAR-10		KDDCUP	
	r seudo anomary	AUC	AUC	AUC	AUC	F1	Precision	Recall
	None (baseline)	92.49	81.47	71.28	60.10	94.53	93.94	95.13
$\lceil \rceil$	Gaussian noise $\sigma = 0.1$	93.32	81.56	71.24	63.20	94.52	93.78	95.28
$\left\{ \ ight $	Gaussian noise $\sigma = 0.5$	93.12	82.10	71.73	61.80	94.78	94.04	95.53
L	Gaussian noise $\sigma = 1$	93.03	82.09	71.92	61.91	95.52	94.78	96.27
	Learnable noise (ours)	94.57	83.23	73.23	67.76	95.58	94.84	96.34

- Pseudo anomaly generation
 - Example #7: Blended Image (BI) Combining 2 normal data
 - Prior knowledge: face swap to create deepfake



- Pseudo anomaly generation
 - Example #8: Self-Blended Image (SBI) combining 2 same normal data



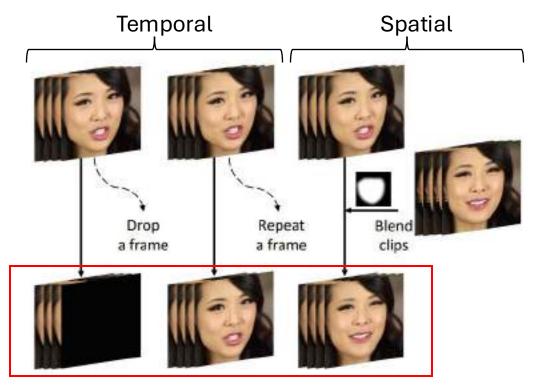
Higher quality pseudo-anomalies (closer to normal) are better:

Method	Test Set AUC (%)							
Wednod	DF	F2F	FS	NT	FF++			
Xception + BI [39]	98.95	97.86	89.29	97.29	95.85			
Xception + SBIs (Ours)	99,99	99.90	98.79	98.20	99.22			

Pseudo anomaly generation

• Example #9: Create temporal and spatial inconsistencies, mimicking

video deepfakes

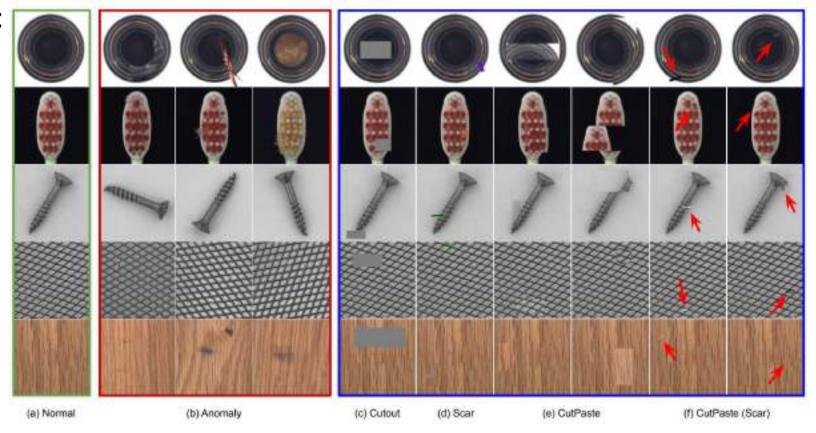


Pseudo-anomaly

- Pseudo anomaly generation
 - Example #10: modify only part of face, instead of whole face

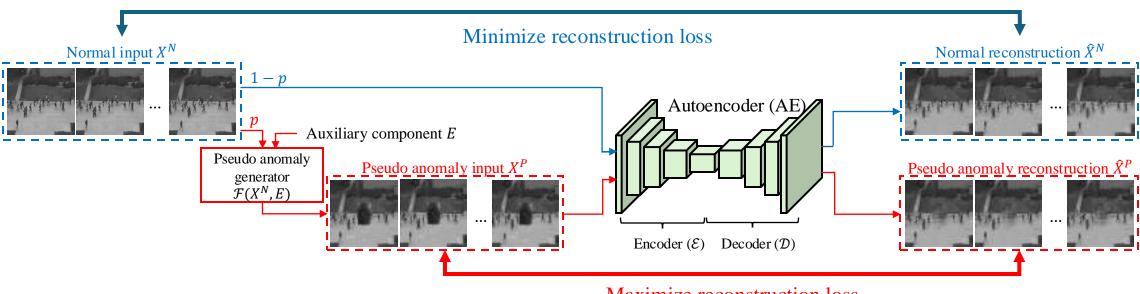
Pseudo anomaly generation

• Example #11:



AD method: one-class: framework

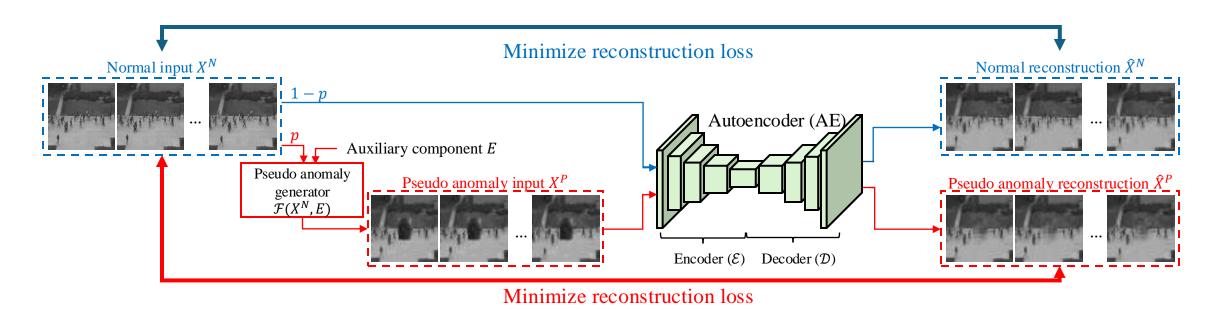
• Example #1: well-reconstruct normal, poorly-reconstruct pseudo anomaly



Maximize reconstruction loss

AD method: one-class: framework

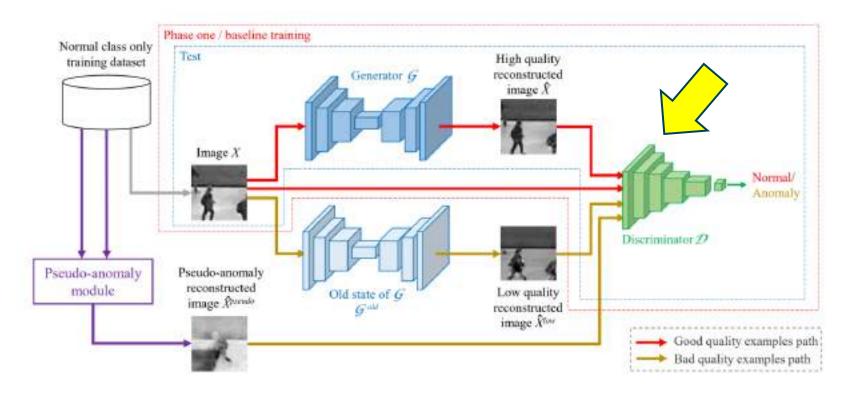
 Example #2: Learn to reconstruct only normal regardless the input (normal & pseudo anomaly)



Source: **Marcella Astrid**, Muhammad Zaigham Zaheer, Jae-Yeong Lee, and Seung-Ik Lee. "Learning Not to Reconstruct Anomalies". In: *British Machine Vision Conference 2021 (BMVC2021)* (Virtual). Nov. 22–25, 2021.

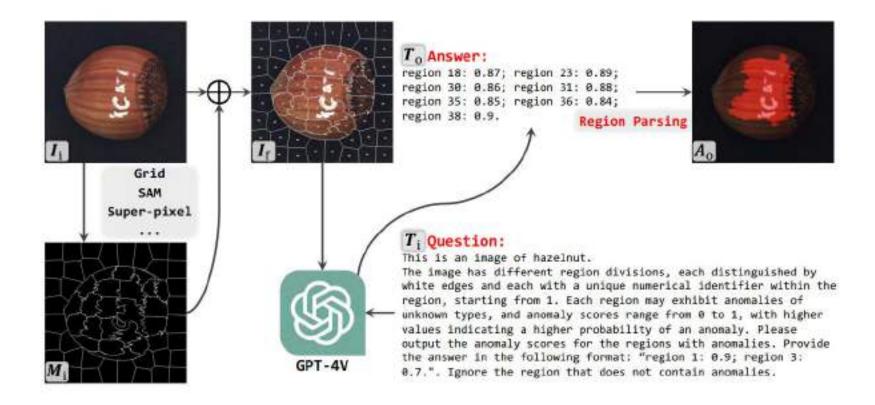
AD method: one-class: framework

• Example #3: binary classifier between normal and pseudoanomaly



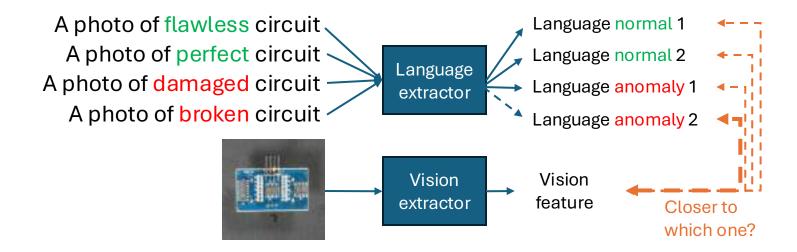
AD method: zero-shot

• Example #1: using Visual-Question-Answering (VQA) model



AD method: zero-shot

Example #2: using CLIP



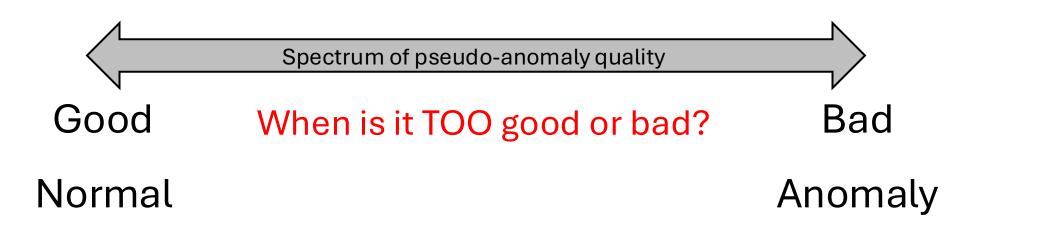
Overview

- Part 2: Introduction to Anomaly Detection
 - Anomalies
 - Anomaly Detection (AD)
 - Application of AD
 - Challenges of AD
 - AD method
 - One-class
 - Model-based
 - Data augmentation-based
 - Framework (model + data augmentation)
 - Zero-shot
 - Summary and food for thought

Summary

- Anomalies are difficult to collect
 - Rare
 - Unlimited possibilities
- Method
 - One class
 - Model: AE, VAE, ...
 - Data: pseudo anomaly
 - Near normal data should be better
 - Hybrid
 - Zero-shot

- How much closer to normal data should be the pseudo anomaly?
 - TOO close to normal data → more false positives (normal data detected as anomaly)
 - TOO far from normal data → not that helpful



- Unseen normal
 - The analogy

Unseen normal

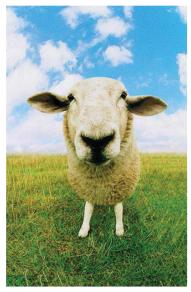
Me who just moved to Korea from Indonesia

- Unseen normal
 - Applications: new environment

Vehicles are normal on the street

Vehicles are anomalous in the house

- Unseen normal
 - Applications: compressed/noisy data



High Resolution

Low Resolution

- What is anomaly/normal anyway?
 - New normal, the analogy

Normal before covid Anomalous during covid

Normal during covid

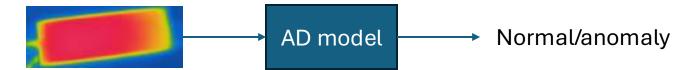
- What is anomaly/normal anyway?
 - Rare normal, the analogy

Overview

- Part 3: Anomaly Detection for Battery Monitoring System
 - AD for thermal image battery
 - Challenges
 - One-shot method
 - Zero-shot method
 - Ongoing challenges

AD for BMS

- AD for battery monitoring system (BMS) with thermal image
 - For safe battery usage
 - Even though, in reality, currently we don't have a way how to put thermal camera in the BMS system



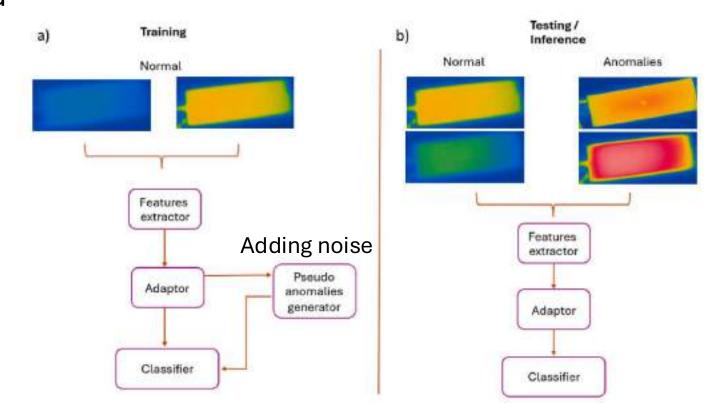
Challenges in AD for thermal image battery

- (Same problem as AD) Anomalous data is difficult to get
 - Safety reason

Overview

- Part 3: Anomaly Detection for Battery Monitoring System
 - AD for thermal image battery
 - Challenges
 - One-shot method
 - Zero-shot method
 - Ongoing challenges

- Binary classifier + feature-level pseudo-anomaly
 - Method



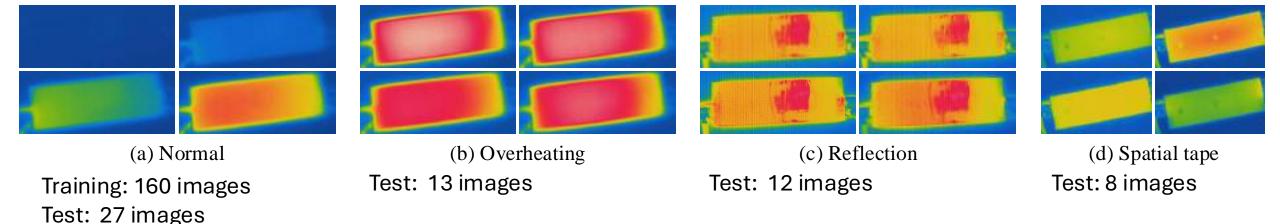
- Binary classifier + feature-level pseudo-anomaly
 - Results (one-class)

Technique	AUROC (clean normal data)		
FAUAD	1		
SimpleNet [22]	1		
DRAEM [39]	0.991		
CFA [40]	0.942		
STFPM [41]	0.961		
PaDiM [42]	0.996		
EfficientAD [43]	1		
DFM [44]	0.996		
FastFlow [37]	1		
PatchCore [21]	0.990		
CFLOW-AD [36]	0.873		

Too many perfect results from many methods.

- Is the dataset too easy?
- Do complicated method necessary?

- Binary classifier + feature-level pseudo-anomaly
 - Dataset
 - Test dataset is representative enough for real anomalies?
 - There can be more anomalies that are more subtle than anomalies in this test data
 - Normal in this dataset can be anomaly depending on context (e.g. in time domain)

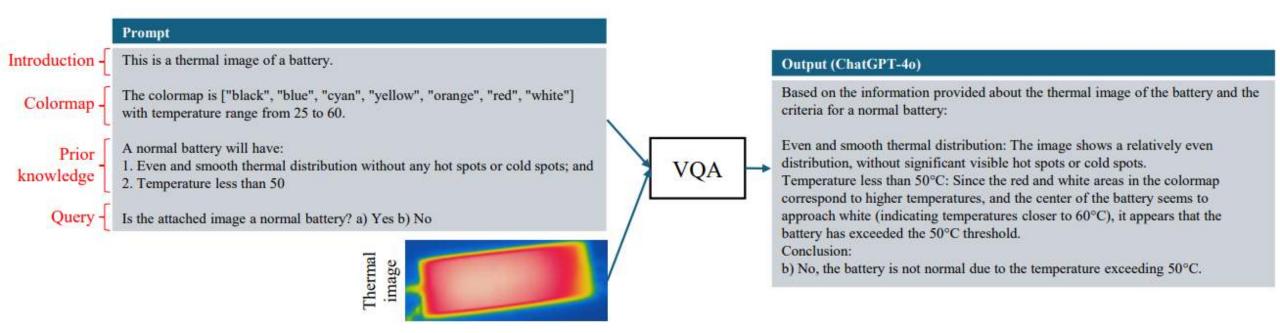


- Binary classifier + feature-level pseudo-anomaly
 - Results (unsupervised)
 - But the method is not specifically built for noisy data (Why does the model robust to noisy data?)

Technique	AUROC (normal data contaminated with 10 % anomalies)			
FAUAD	0.990			
SimpleNet [22]	0.977			
DRAEM [39]	0.922			
CFA [40]	0.878			
STFPM [41]	0.871			
PaDiM [42]	0.863			
EfficientAD [43]	0.810			
DFM [44]	0.803			
FastFlow [37]	0.793			
PatchCore [21]	0.774			
CFLOW-AD [36]	0.769			

Zero-shot AD for thermal image battery

- Using VQA model with prior knowledge of normal battery
 - Method



Zero-shot AD for thermal image battery

- Using VQA model with prior knowledge of normal battery
 - Results

Method	AUC (%) clean train	AUC (%) noisy train	Method	AUC (%) clean train	AUC (%) noisy train
CFLOW-AD [19]	87.3	76.9	STFPM [20]	96.1	87.1
PatchCore [21]	99.0	77.4	CFA [22]	94.2	99.0
FastFlow [23]	100.0	79.3	DRAEM [24]	99.1	92.2
DFM [25]	99.6	80.3	SimpleNet [26]	100.0	97.7
EfficientAD [27]	100.0	81.0	FAUAD [8]	100.0	99.0
PaDiM [28]	99.6	86.3	Ours (zero-shot)	86	5.6

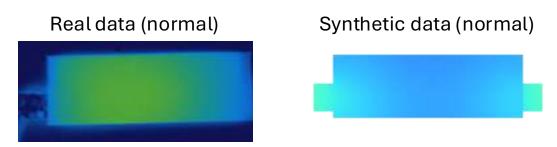
86.6 only using ChatGPT without any training. Not so bad, huh?

Overview

- Part 3: Anomaly Detection for Battery Monitoring System
 - AD for thermal image battery
 - Challenges
 - One-shot method
 - Zero-shot method
 - Ongoing challenges

Ongoing challenges

- Obtaining representative anomalous data \rightarrow at least, for test.
 - Possible solutions:
 - Synthetic but realistic data
 - Almost-anomaly as "anomaly"
 - Really try exploding batteries, e.g., inside explosion-proof room
 - ???



The heat propagation is not same → can we trust the synthetic data?

Marcella Astrid
marcella.astrid@gmail.com