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1. Executive Summary 
This report addresses the critical issue of ensuring safety and reliability in Electric 
Vehicles (EVs) by focusing on early anomaly detection in Lithium-ion batteries. 
These batteries are susceptible to various anomalies, with thermal deviations 
being a major concern. Our approach leverages thermal imaging to identify such 
anomalies while coping with limitations like computational constraints, limited 
training data, noise, and dynamic operating conditions. 

Data-driven Anomaly Detection Techniques 

Data-driven techniques leverage machine learning and deep learning for 
anomaly pattern extraction from historical battery data. Although our model is 
data driven, it is agnostic to the specific battery model. 

There are three main categories within data-driven techniques: 

1. Reconstruction-based: Analyze deviations from reconstructed data 
points. While effective, these techniques can struggle with anomalies that 
share features with normal data. 

2. Embedding-based: Project data points into a lower-dimensional space 
for easier anomaly identification. The main limitations are the domain 
mismatch of the embedded features and the computational cost. 

3. Synthesizing-based: Focuses on learning the distribution of normal data 
and flagging outliers. We leverage this concept for anomaly synthesis in 
the feature space. 

Addressing Limitations and Proposed Approach 

The proposed approach FAUAD (Feature-Adapted Unsupervised Anomaly 
Detection) tackles the limitations in existing techniques to effectively detect 
anomalies in battery thermal images thanks to: 

• Feature space anomaly synthesis within the embedded feature space for 
efficient and accurate anomaly representation. 

• Domain adaptation to adjust pre-trained features for improved 
effectiveness on battery thermal images. 
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• Efficient architecture that is simple but efficient for faster training, 
inference, and deployment in real-world applications. 

Benefits: 

• Reduced training data needs: Eliminates the need for extensive real 
anomaly data through unsupervised learning. 

• Universal applicability: Adaptable to diverse and unexpected anomaly 
types, even those not explicitly included in training data. 

Current Limitation: 

Pinpointing anomaly cause: While anomaly detection is achieved, identifying 
the specific cause requires dedicated models with labeled data (not available due 
to anomalous data scarcity). 

Conclusion 

This report proposes FAUAD, a novel unsupervised anomaly detection method for 
battery thermal images in Electric Vehicles (EVs).  Leveraging readily available 
normal data (due to anomalous data scarcity), FAUAD tackles the critical need for 
early detection of thermal anomalies which represent a major threat to battery 
health.  Experiments show that FAUAD outperforms existing techniques, 
achieving the highest anomaly detection accuracy while maintaining a compact 
15 MB model size ideal for resource-constrained edge devices in EVs. This paves 
the way for improved EV battery safety and reliability.  
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2. Introduction 
Electric vehicles (EVs) are rapidly gaining traction as a sustainable transportation 
solution. However, ensuring their safety and reliability hinges on the health and 
performance of their lithium-ion batteries. These batteries are complex systems 
susceptible to various anomalies, from degradation and overheating to internal 
short circuits. Early detection of such anomalies is crucial for preventing 
catastrophic failures, safeguarding passengers, and extending battery life. 

2.1. Anomalies in EV batteries 

Anomalies in EV batteries can manifest in various ways [Berg 2015, Castelvecchi 
2021, Dong and Lin, 2021, Zhang et al., 2023]: 

• Degradation: Gradual loss of battery capacity over time due to chemical 
and physical processes, reducing range and performance. 

• Voltage fluctuations: Abnormal voltage spikes or dips, potentially 
indicating internal cell imbalances, short circuits, or faulty connections. 

• Current imbalances: Unequal current distribution among battery cells, 
leading to premature aging and potential cell damage. 

• Impedance changes: Increases in internal resistance, reflecting 
degradation, structural issues, or manufacturing defects. 

• Thermal deviations: Excessive heating or uneven temperature 
distribution, suggesting improper cooling, internal resistances, or thermal 
runaway risks. 

This deliverable, which addresses heat monitoring, primarily concentrates on 
thermal deviations as the key indicators of anomalies.  

2.2. Anomaly Detection in Thermal Images 

Thermal imaging captures the infrared radiation emitted by objects, providing 
valuable information about their temperature distribution. Thermal images can 
manifest deviations from normal thermal patterns, indicating potential problems 
or suspicious activities. Identifying these deviations (anomalies) effectively is 
crucial for making informed decisions based on thermal data. 

Several factors complicate anomaly detection in thermal images: 
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• Computational constraints: Real-time anomaly detection in resource-
limited onboard systems necessitates efficient and lightweight 
algorithms. 

• Limited training data: Collecting large, diverse datasets for training 
anomaly detection models can be challenging. It’s important to 
understand that creating a complete collection of anomalies to cover 
every case is virtually unattainable, particularly when it comes to the 
varied and unpredictable irregularities found in batteries. 

• Noise: Sensor noise, environmental factors, and image acquisition 
conditions can introduce artifacts and obscure anomalies. 

• Dynamic operating conditions: Battery behaviour heavily depends on 
driving patterns, ambient temperature, and charging regimes, 
necessitating adaptable anomaly detection algorithms. 

The proposed approach aims to cope with these limitations by providing a 
lightweight model that eliminates the need for extensive real anomaly data to be 
universal enough to adapt to unexpected anomalies. 

2.3. Types of Anomalies in thermal images 

Anomalies in thermal images can broadly be categorized as: 

• Temperature outliers: Significant deviations from the expected 
temperature range, such as hot spots indicating equipment overheating or 
cold spots suggesting insulation breaches. 

• Texture variations: Irregularities in the spatial distribution of temperature, 
potentially revealing material defects, surface anomalies, or foreign 
objects. 

• Shape abnormalities: Deviations from the expected shape of an object, 
indicating structural damage, equipment malfunctions, or suspicious 
activities. 

2.4. Early detection of Anomalies 

Early detection refers to the process of identifying these anomalies at the earliest 
possible stage, often before they have caused significant damage or disruption. 
This is achieved by continuously monitoring the thermal images and detecting any 
changes beyond what has been defined as a normal image. Any significant change 
in the temperature outliers, texture variations, or shape abnormalities is 
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considered an anomaly and triggers an alert for further investigation. This 
approach offers significant benefits for early detection of possible battery failures, 
potentially preventing catastrophic events. 

 

3. Anomaly detection 

techniques 
There are various approaches employed for EV battery anomaly detection: 

• Model-based techniques: Utilize physical and electrochemical models of 
battery behaviour to identify deviations from predicted responses. 

• Data-driven techniques: Leverage machine learning and deep learning 
algorithms to analyse historical battery data and extract anomaly patterns. 

• Hybrid techniques: Combine the strengths of model-based and data-
driven techniques for increased accuracy and interpretability. 

The goal is to get a model that is agnostic to the battery model; hence, data-
driven techniques will be employed. Hence, the approach can be universally 
applicable to diverse and unexpected anomaly types, as they cannot be explicitly 
captured for training.  

There are three main categories of data-driven anomaly detection techniques: 

1. Reconstruction-based techniques: try to reconstruct normal data points and 
identify anything that deviates significantly from the reconstruction as an 
anomaly. 

2. Embedding-based techniques: map data points into a lower-dimensional space, 
where anomalies are expected to be isolated or deviate from the typical patterns 
of normal data. 

3. Synthesizing-based techniques: aim to learn the underlying distribution of 
normal data and then flag any data points not well-represented by the learned 
model as anomalies. 
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3.1. Reconstruction-based techniques 

These techniques exploit the notion that anomalous image regions deviate 
significantly from the patterns observed in training data, making their faithful 
reconstruction challenging. This approach leverages various techniques: 

• Generative models: Some techniques employ generative models like 
autoencoders [Gong et al., 2019] and generative adversarial networks 
(GANs) [Goodfellow et al., 2014] to learn a compressed representation and 
reconstruct normal data from it. Deviations from this learned 
representation are then flagged as anomalies. 

• Inpainting: Other techniques [Haselmann et al., 2018, Ristea et al., 2022, 
Zavrtanik et al., 2021b] frame anomaly detection as an inpainting problem. 
Here, random image patches are masked, and neural networks are trained 
to predict and fill the missing information. The structural similarity index 
(SSIM) loss function [Wang et al., 2004] is commonly used during training 
to guide the reconstruction process towards preserving structural details. 

• Anomaly map generation: Finally, an anomaly map can be generated by 
calculating the pixel-wise difference between the original image and its 
reconstructed version. This map highlights regions with significant 
reconstruction errors, potentially indicating anomalies. 

However, if anomalies share common features like local edges with normal data, 
or the reconstruction model is overly powerful, accurate reconstruction of 
anomalies might occur, leading to false negatives [Zavrtanik et al., 2021b]. 

3.2. Embedding-based techniques 

These techniques have recently emerged as a powerful approach for anomaly 
detection. They work by compressing normal features. The features are extracted 
and embedded into a lower-dimensional space. This compression allows for 
easier identification of anomalies, which typically lie far away from the clusters 
formed by normal features. 

Many techniques [Defard et al., 2021, Deng and Li, 2022, Roth et al., 2022, 
Rudolph et al., 2022] utilize pre-trained models to extract relevant features from 
the images. These models help improve performance by providing a good starting 
point for feature extraction. 

However, these techniques face several limitations: 
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• Domain mismatch: real-time images often have different visual 
characteristics compared to the data used to pre-train models. This 
mismatch can lead to inaccurate anomaly detection. 

• Performance limitations: Some techniques, like PaDiM [Defard et 
al., 2021] and PatchCore [Roth et al., 2022], rely on computationally 
expensive steps like calculating covariance inverses or searching 
large memory banks. This can hinder real-time performance, 
especially on resource-constrained devices. 

• Memory consumption: Techniques like normalizing flow [Rezende 
and Mohamed, 2015], employed by methods like CS-Flow [Rudolph 
et al., 2022], CFLOW-AD [Gudovskiy et al., 2022], and DifferNet 
[Rudolph et al., 2021], can be memory-intensive as they require 
processing full-sized feature maps and utilizing memory-hungry 
layers. 

• Increased complexity: Distillation techniques [Bergmann et al., 
2020, Deng and Li, 2022] require training in two separate networks, 
a teacher and a student, doubling the computational cost and 
potentially slowing down inference. 

3.3. Synthesizing-based techniques 

These techniques adopt a different approach, aiming to learn how to differentiate 
normal data from anomalies without actual anomalous examples. This strategy 
involves: 

• Synthesizing anomalies on clean images: Several techniques, 
like DREAM [Zavrtanik et al., 2021a], attempt to generate realistic 
"just-out-of-distribution" patterns and train a network to 
discriminate between them and normal data. However, this 
approach can be computationally expensive and may not capture 
the full spectrum of real-world anomalies. 

• CutPaste strategy [Li et al., 2021]: This simpler technique 
randomly cuts and pastes image patches within an image, creating 
altered versions that serve as synthetic anomalies. However, these 
"anomalies" often lack the characteristics of real ones, limiting their 
effectiveness. 

• Synthesizing anomalies in feature space: [Liu et al., 2023, Sohn 
et al., 2021] synthesize anomalies in the feature space by adding 
Gaussian noise or data augmentation. These are interesting 
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approaches and demonstrate high accuracy. Hence, this work is 
inspired by such approaches while adapting the strategy to our 
needs. It is worth noting that generating a comprehensive set of 
synthetic anomalies to encompass all possible variations is 
practically impossible, especially when dealing with diverse and 
unpredictable anomalies like those in batteries.  
 

3.4. Addressing existing limitations 

To detect anomalies in thermal images of batteries, we can overcome the 
limitations in the existing state of art by exploiting several key strategies: 

• Feature space anomaly synthesis: Instead of generating synthetic 
anomalies directly in the thermal image domain, which can be 
unrealistic, we generate them within the embedded battery 
feature space to allow for more efficient and accurate anomaly 
representation.  

• Domain adaptation: As pre-trained models introduce a domain 
mismatch when applied to the acquired battery thermal images, 
we incorporate a "feature adapter" to adjust pre-trained features 
to the battery domain to improve its effectiveness. 

• Efficient architecture: We utilize simplified but efficient 
architecture for inference, see Section 4. This design choice 
facilitates faster training, inference, and deployment, making it 
suitable for real-applications and industrial settings. 

Hence, our approach would: 

• eliminate the need for extensive real anomaly data. Unlike 
traditional methods requiring large amounts of labeled anomaly 
data, our approach employs unsupervised learning. This allows 
the model to learn from normal data and identify deviations without 
pre-defined anomaly examples, making it more adaptable to 
unforeseen anomalies in real-world scenarios. 

• be universally applicable to diverse and unexpected anomaly 
types that cannot be explicitly captured during training. This offers 
significant benefits for early detection of possible battery failures, 
potentially preventing catastrophic events. 
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Current limitation: While our approach would support early anomaly detection, 
a key limitation remains; pinpointing the specific cause of the detected anomaly. 
This would require dedicated models trained on labeled data containing specific 
types of anomalies. These are not available to the consortium as anomalous 
behaviors are rare and acquiring enough real anomalous images might not be 
achievable. Hence, the consortium adopted the unsupervised learning direction 
which models the normality (where enough data is available) rather than 
abnormality.   

 

4. Unsupervised Thermal 

based Anomaly Detection  
We call the proposed approach FAUAD (Feature-Adapted Unsupervised Anomaly 
Detection), see Figure 1. It models the normality of the input data and synthesizes 
anomalies (pseudo anomalies) in its feature space. It follows the ideology of One 
Class Classification (OCC) anomaly detection algorithms where a model is 
trained on what is considered “normal” data and then using that model to detect 
whether new data is normal or an anomaly [Liu et al., 2023]. 

 

Figure 1 A simplified illustration of the Energetic model called FAUAD for unsupervised anomaly 

detection in thermal images of batteries. 
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Given an input thermal image: 

1. Features are extracted using the pretrained model to enrich the feature 
space. 

2. The features pass a domain adaptation step. 
3. The adapted features are then disturbed using noise to act as pseudo 

anomalies. 
4. The adapted and disturbed features pass through a discriminator. 

The above procedure has proven its effectiveness as will be seen in the reported 
experiments in Section 4.4.  

4.1. Proposed model 

As briefly explained above, the proposed algorithm extracts normal features, 
adapt them, produce pseudo anomalies, and finally discriminate between them. 
The following subsections will give more details on each step. 

4.1.1. Feature extraction 

The Feature Extractor, following the approach described in [Roth et al., 2022, Liu 
et al., 2023], obtains local features. For each image, the pre-trained network 
extracts features from various hierarchies. However, since the pre-trained 
network is biased towards the dataset on which it was trained, it is rational to 
select only a subset of early levels that contain more generic features.  

To ensure compatibility with edge devices and enable real-time applications with 
EVs (Electric Vehicles), we opted for a lightweight pretrained resnet18 model in 
PyTorch [PyTorch, 2024] where the features from the first three layers are used, 
similar to [Akcay et al., 2022]. By selecting this model, we ensure that our solution 
can be easily deployed on various edge devices without compromising 
performance. 

4.1.2. Domain adaptation 

To address the difference in distribution between the captured thermal images 
and the dataset used for backbone pre-training, we utilize a Feature Adaptor. This 
Adaptor is employed to transfer the training features to the target domain, 
ensuring compatibility between the two domains. the adaptor component 

https://pytorch.org/vision/main/models/generated/torchvision.models.resnet18.html
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performs a transformation on the pre-trained features. In our case, the feature 
adaptor consists of a single fully connected layer that has the same number of 
input and output channels, and it does not include a bias term [Liu et al., 2023].  

4.1.3. Pseudo anomalies generation 

Training the Discriminator to identify normal samples requires negative samples, 
or examples of anomalies. While sampling real-world thermal anomalies can be 
difficult, adding Poisson noise to normal features provides a tractable way to 
generate artificial anomalies [Altmann et al., 2021]. Poisson noise is a natural 
choice because it models the occurrence of rare events, which is a common 
characteristic of anomalies in real-world data. 

4.1.4. Features Discrimination 

Acting as a normality scorer, the Discriminator learns to distinguish between 
normal and anomalous images. During training, we present it with both normal 
data (positive samples) and data augmented with Poisson noise (negative 
samples). The Discriminator's goal is to output high values for genuine data 
(normal features) and low values for anomalies (features with noise). We achieve 
this with a simple two-layer multi-layer perceptron (MLP), a common architecture 
for classification tasks. 

4.2. Capturing thermal images 

For AI thermal image analysis model training, real thermal images had to be 
obtained. This has been performed by Coventry University, using FLIR T640 
infrared camera by FLIR Systems. This system is rated at +/-2% of reading 
accuracy, capturing 640 x 480 pixel images at 24 bit depth using sRGB colour 
representation. Focal length of 13mm and exposure time of 1/46 sec. are pre-set. 

The camera is suspended above the cell under testing (SPIM11309102-GL40 
Pouch cell), as shown in Figure 2. The cell under test is connected to a 5V 200A 4-
wire battery cycler (Neware®). All testing is conducted inside a controlled 
environment thermal chamber (Weiss Technik®). 
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Figure 2 Thermal images acquisition test set-up 

Initially obtained images contained reflections, which leads to erroneous thermal 
readings, despite attempts to keep the chamber blacked out during tests. To 
alleviate this issue the surface of the cell was sprayed with a matt black paint 
(Ambersil) as advised by the thermal camera manufacturer, see Figure 3. 
Following this correction, Example of the resulting thermal images is shown in 
Figure 4. 

 

Figure 3 Cell sprayed with matt black paint (Ambersil). 

Thermal images were collected using a time-lapse mode of 15 seconds per image, 
resulting in thousands of images per test. Cell cycling performance data 
(potential, current, capacity) was collected alongside. The combined data 
obtained was shared with SnT for AI image analysis training. 

FLIR T640 
infrared camera 

SPIM11309102-
GL40 Pouch cell 
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Figure 4 Thermal image of a cell captured during cycling. Left) before painting, Right) after painting. 

  

4.3. Thermal anomalies 

Thermal anomalies can be defined by delta over space / gradient (e.g. one area is 
hotter by 5 degrees - normal, by 20 degrees - anomalous), and time (steady 
increase over time - normal, sudden increase – anomalous), so they exist across 
both spatial and temporal axes. In thermal images, “overheat” refers to areas that 
display colors towards the higher end of the used colormap, indicating 
temperatures that exceed the normal or safe range for the observed object or 
environment. 

The proposed unsupervised anomaly detection model FAUAD is tested and 
benchmarked against state-of-the-art models. Two sets of anomalies were 
extracted from the captured thermal images: overheat images and the images 
with non-uniform thermal propagation (represented by reflections), see Figures 5, 
6. 

 

Figure 5 Thermal image of a cell captured during cycling. Left) overheated, Right) with reflections before 

matte black painting. 

The first category represents dangerous levels of heat on the battery surface and 
the second category visually represents non-homogeneous abnormal heat 
propagation. Reflections observed during methodology development, as outlined 
in section 4.2, have been utilized to replicate non-homogeneity. While coating the 
cell with matte black paint, an area was masked and then uncovered, leaving a 
reflective patch, see Figure 6. That patch resulted in spatial anomaly, leaving 
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areas of sharp temperature gradient, which would indicate abnormal cell 
operation and areas of potential cell failure. 

 

Figure 6 Coating the cell with matte black paint, an area was masked and then uncovered, leaving a 

reflective patch. Left) the painted cell, Right) the thermal image. 

The captured thermal images have been structured to extend the MVTec 
[Bergmann et al., 2019] industrial anomaly detection dataset for the classification 
task. The “battery anomaly detection dataset” folder contains “train” and “test” 
folders. The train folder contains normal data only in a folder called “good”. The 
“test” folder contains the “good” folder for normal data and remaining folders 
(“overheat” and “reflection”) to represent anomalies. For more examples, see 
Appendix A. 

It is important to note that the model learns what is ‘normal’ based on the input 
data characterized as ‘normal.’ Consequently, any pattern that deviates from this 
learned normality, when introduced to the trained model, will be flagged as an 
anomaly. For instance, consider a scenario where a thermal camera is dislodged 
from its original position due to a significant jolt. This displacement may result in 
the production of thermal images with propagation patterns that differ markedly 
from the ‘normal’ patterns on which the model was trained. In such a case, the 
model would identify the observed images as anomalies. Although these are not 
genuine anomalies from the perspective of the battery’s functionality, the 
triggered anomaly alert would still indicate that an abnormal event has occurred. 

4.4. Experiments 

We compared FAUAD’s performance to state-of-the-art algorithms using two 
classification scenarios: 

• The first scenario mimicked real-world data by including a small 
percentage of anomalies (10%), simulating potential issues during data 
collection. Although this might not be a realistic scenario in the context of 
batteries as the environment will be well controlled for safety reasons, it 
provides an opportunity to assess the effectiveness of FAUAD in learning 
normality compared to existing studies. 
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• The second experiment acted as a control, training on only clean, normal 
data.  

This two-pronged approach allows us to assess the robustness of all models 
under realistic and ideal data collection conditions. 

For feature extraction in all models, we opted for a lightweight backbone, pre-
trained ResNet18 model from PyTorch's TorchVision library. ResNet18's pre-
trained weights, obtained from its training on the massive ImageNet dataset, 
provide a valuable foundation for anomaly detection. These pre-trained 
features capture generic image properties that can be leveraged to model 
normality in our task. This choice strikes a balance between model size and 
performance, making it ideal for deployment on resource-constrained edge 
devices. 

 

Table 1 Experimental scenarios: First scenario (first column) mimicked real-world data simulating 

potential issues during data collection. Second scenario (second column) to train on normal data only. 

Technique AUROC (normal data 

contaminated with 

10% anomalies) 

AUROC (clean 

normal data) 

Trained 

model size 

FAUAD (Energetic’s model) 0.990 1 15 MB 

SimpleNet [Liu et al., 2023] 0.977 1 15 MB 

DRAEM [Zavrtanik et al., 2021a] 0.922 0.991 1100 MB 

CFA [Lee et al., 2022] 0.878 0.942 30MB 

STFPM [Wang et al., 2021] 0.871 0.961 43 MB 

PaDiM [Defard et al., 2021] 0.863 0.996 175 MB 

EfficientAD [Batzner et al., 2024] 0.810 1 81 MB 

DFM [Nilesh et al., 2019] 0.803 0.996 15 MB 

FastFlow [Yu et al., 2021] 0.793 1 65 MB 

PatchCore [Roth et al., 2022] 0.774 0.990 42 MB 

CFLOW-AD [Gudovskiy et al., 2022] 0.769 0.873 171 MB 

This table compares FAUAD with the state-of-art anomaly detection techniques 
based on Area Under the ROC Curve (AUROC), model size, and performance on 
clean vs. contaminated data. Here are some key takeaways: 

• FAUAD (Energetic's model): This model boasts the highest AUROC 
(0.990) on contaminated data and a perfect score (1) on clean data. 
Additionally, its model size is a modest 15 MB. This combination makes it 
a very attractive option for edge devices. 
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• SimpleNet: While not quite reaching the heights of FAUAD, SimpleNet 
delivers a strong AUROC (0.977) on contaminated data and maintains a 
perfect score on clean data. It also shares the same 15 MB model size as 
FAUAD, making it another strong contender. 

• Performance on Clean Data: Techniques like DFM (15 MB), CFA (30 MB), 
PatchCore (42 MB), STFPM (43 MB), FastFlow (65 MB) and EfficientAD (81 
MB), have lower overall performance on contaminated data. However, 
they excel at identifying normal data (AUROC is equal or close to 1).  

In conclusion, FAUAD and SimpleNet emerge as the top contenders based on 
their high AUROC on contaminated data, perfect score on clean data, and 
compact model size.  

 

5. Conclusion 
This report addressed the crucial challenge of ensuring safety and reliability in 
Electric Vehicles (EVs) by proposing FAUAD, a novel approach for unsupervised 
anomaly detection in Lithium-ion battery thermal images. Thermal anomalies 
pose a significant threat to battery health, and FAUAD offers an efficient and 
robust solution for their early detection to help mitigate any significant threat due 
to unexpected failures. 

A key strength of FAUAD in battery health monitoring lies in its ability to leverage 
unsupervised learning. This approach is particularly well-suited due to the 
scarcity of labeled thermal image-based anomaly data. By focusing on readily 
available normal data, FAUAD can effectively detect anomalies without the need 
for extensive and potentially hazardous anomaly collection. 

The conducted experiments demonstrate FAUAD's effectiveness. Amongst the 
evaluated techniques, FAUAD and SimpleNet emerge as the frontrunners. Both 
achieve a perfect AUROC score on clean data, indicating exceptional ability to 
identify normal battery behavior. Furthermore, FAUAD boasts the highest AUROC 
(0.990) on normal data contaminated with few anomalies, highlighting its 
proficiency in anomaly detection even under less-than-ideal conditions. This is 
achieved while maintaining a compact model size (15 MB), making it suitable for 
deployment on resource-constrained edge devices commonly found in EVs. 
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In conclusion, FAUAD presents a significant advancement in unsupervised 
anomaly detection for Lithium-ion batteries. Its ability to leverage readily 
available normal data, combined with its strong performance and efficient 
design, makes FAUAD a compelling solution for ensuring EV battery safety and 
reliability. Future work could explore incorporating labeled data, if it becomes 
available, to potentially improve FAUAD's ability to pinpoint the root cause of 
detected anomalies.  
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Appendix A 
The following sections present thermal images captured using the method described 

in Section 4.2. Note that the ambient room temperature during capture was 

approximately 24°C. 

The maximum temperature displayed in the images may vary depending on the 

thermal camera settings. There are two main options: 

• Automatic: In this mode, the colormap is relative and doesn't directly translate 

to normal vs. abnormal behavior. It simply shows a temperature gradient from 

coldest (typically dark blue) to hottest (typically red or yellow). 

• Fixed: This mode sets a specific temperature range for the colormap. This 

allows the images to visually represent normal operation (colors within a safe 

range) and unsafe operation (colors exceeding a pre-defined threshold, 

typically above 50°C). 

Using the fixed mode of the colormap is crucial for accurate analysis. 

Examples of normal heat propagation 

Under normal operation, a thermal image of a battery should display a consistent 

pattern of heat dissipation. 
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Examples of overheating 

While the heat distribution appears uniform, the shades of red color indicate the 

presence of dangerously high temperatures. 

  

  

Examples of non-homogenous heat propagation 

In the absence of real non-homogenous heat propagation anomalies for testing 

purposes, we can leverage reflections in thermal images, see Section 4.2 and 4.3, to 

simulate non-uniform heat patterns. These reflections may cause colors in the image 

to deviate from the expected homogenous distribution on the battery surface which 

resembles non-homogenous propagation anomalies. 
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Examples of overheating and non-homogenous heat propagation 

These images showcase an example where two visual anomalies coexist - uneven heat 

distribution across the battery surface and excessively high temperatures 

(overheating). 

 

  


