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1. Executive Summary

This report addresses the critical issue of ensuring safety and reliability in Electric
Vehicles (EVs) by focusing on early anomaly detection in Lithium-ion batteries.
These batteries are susceptible to various anomalies, with thermal deviations
being a major concern. Our approach leverages thermal imaging to identify such
anomalies while coping with limitations like computational constraints, limited
training data, noise, and dynamic operating conditions.

Data-driven Anomaly Detection Techniques

Data-driven techniques leverage machine learning and deep learning for
anomaly pattern extraction from historical battery data. Although our model is
data driven, it is agnostic to the specific battery model.

There are three main categories within data-driven techniques:

1. Reconstruction-based: Analyze deviations from reconstructed data
points. While effective, these techniques can struggle with anomalies that
share features with normal data.

2. Embedding-based: Project data points into a lower-dimensional space
for easier anomaly identification. The main limitations are the domain
mismatch of the embedded features and the computational cost.

3. Synthesizing-based: Focuses on learning the distribution of normal data
and flagging outliers. We leverage this concept for anomaly synthesis in

the feature space.
Addressing Limitations and Proposed Approach

The proposed approach FAUAD (Feature-Adapted Unsupervised Anomaly
Detection) tackles the limitations in existing techniques to effectively detect

anomalies in battery thermal images thanks to:

e Feature space anomaly synthesis within the embedded feature space for
efficient and accurate anomaly representation.

e Domain adaptation to adjust pre-trained features for improved
effectiveness on battery thermal images.

Copyright info - Contract No. 101103667 5
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e Efficient architecture that is simple but efficient for faster training,
inference, and deployment in real-world applications.

Benefits:

e Reduced training data needs: Eliminates the need for extensive real
anomaly data through unsupervised learning.

e Universal applicability: Adaptable to diverse and unexpected anomaly
types, even those not explicitly included in training data.

Current Limitation:

Pinpointing anomaly cause: While anomaly detection is achieved, identifying
the specific cause requires dedicated models with labeled data (not available due
to anomalous data scarcity).

Conclusion

This report proposes FAUAD, a novel unsupervised anomaly detection method for
battery thermal images in Electric Vehicles (EVs). Leveraging readily available
normal data (due to anomalous data scarcity), FAUAD tackles the critical need for
early detection of thermal anomalies which represent a major threat to battery
health. Experiments show that FAUAD outperforms existing techniques,
achieving the highest anomaly detection accuracy while maintaining a compact
15 MB model size ideal for resource-constrained edge devices in EVs. This paves
the way for improved EV battery safety and reliability.

Copyright info - Contract No. 101103667 6
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2. Introduction

Electric vehicles (EVs) are rapidly gaining traction as a sustainable transportation
solution. However, ensuring their safety and reliability hinges on the health and
performance of their lithium-ion batteries. These batteries are complex systems
susceptible to various anomalies, from degradation and overheating to internal
short circuits. Early detection of such anomalies is crucial for preventing
catastrophic failures, safeguarding passengers, and extending battery life.

2.1. Anomalies in EV batteries

Anomalies in EV batteries can manifest in various ways [Berg 2015, Castelvecchi
2021, Dong and Lin, 2021, Zhang et al., 2023]:

e Degradation: Gradual loss of battery capacity over time due to chemical
and physical processes, reducing range and performance.

e Voltage fluctuations: Abnormal voltage spikes or dips, potentially
indicating internal cell imbalances, short circuits, or faulty connections.

e Current imbalances: Unequal current distribution among battery cells,
leading to premature aging and potential cell damage.

e Impedance changes: Increases in internal resistance, reflecting
degradation, structural issues, or manufacturing defects.

e Thermal deviations: Excessive heating or uneven temperature
distribution, suggesting improper cooling, internal resistances, or thermal
runaway risks.

This deliverable, which addresses heat monitoring, primarily concentrates on
thermal deviations as the key indicators of anomalies.

2.2. Anomaly Detection in Thermal Images

Thermal imaging captures the infrared radiation emitted by objects, providing
valuable information about their temperature distribution. Thermal images can
manifest deviations from normal thermal patterns, indicating potential problems
or suspicious activities. Identifying these deviations (anomalies) effectively is

crucial for making informed decisions based on thermal data.

Several factors complicate anomaly detection in thermal images:

Copyright info - Contract No. 101103667 7
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e Computational constraints: Real-time anomaly detection in resource-
limited onboard systems necessitates efficient and lightweight
algorithms.

e Limited training data: Collecting large, diverse datasets for training
anomaly detection models can be challenging. It’s important to
understand that creating a complete collection of anomalies to cover
every case is virtually unattainable, particularly when it comes to the
varied and unpredictable irregularities found in batteries.

e Noise: Sensor noise, environmental factors, and image acquisition
conditions can introduce artifacts and obscure anomalies.

e Dynamic operating conditions: Battery behaviour heavily depends on
driving patterns, ambient temperature, and charging regimes,
necessitating adaptable anomaly detection algorithms.

The proposed approach aims to cope with these limitations by providing a
lightweight model that eliminates the need for extensive real anomaly data to be
universal enough to adapt to unexpected anomalies.

2.3. Types of Anomalies in thermal images

Anomalies in thermal images can broadly be categorized as:

e Temperature outliers: Significant deviations from the expected
temperature range, such as hot spots indicating equipment overheating or
cold spots suggesting insulation breaches.

e Texture variations: Irregularities in the spatial distribution of temperature,
potentially revealing material defects, surface anomalies, or foreign
objects.

e Shape abnormalities: Deviations from the expected shape of an object,
indicating structural damage, equipment malfunctions, or suspicious

activities.

2.4. Early detection of Anomalies

Early detection refers to the process of identifying these anomalies at the earliest
possible stage, often before they have caused significant damage or disruption.
This is achieved by continuously monitoring the thermalimages and detecting any
changes beyond what has been defined as a normalimage. Any significant change

in the temperature outliers, texture variations, or shape abnormalities is

Copyright info - Contract No. 101103667 8
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considered an anomaly and triggers an alert for further investigation. This
approach offers significant benefits for early detection of possible battery failures,
potentially preventing catastrophic events.

3. Anomaly detection
techniques

There are various approaches employed for EV battery anomaly detection:

e Model-based techniques: Utilize physical and electrochemical models of
battery behaviour to identify deviations from predicted responses.

e Data-driven techniques: Leverage machine learning and deep learning
algorithms to analyse historical battery data and extract anomaly patterns.

e Hybrid techniques: Combine the strengths of model-based and data-
driven techniques for increased accuracy and interpretability.

The goal is to get a model that is agnostic to the battery model; hence, data-
driven techniques will be employed. Hence, the approach can be universally
applicable to diverse and unexpected anomaly types, as they cannot be explicitly
captured for training.

There are three main categories of data-driven anomaly detection techniques:

Reconstruction-based techniques: try to reconstruct normal data points and
identify anything that deviates significantly from the reconstruction as an
anomaly.

Embedding-based techniques: map data points into a lower-dimensional space,
where anomalies are expected to be isolated or deviate from the typical patterns
of normal data.

. Synthesizing-based techniques: aim to learn the underlying distribution of
normal data and then flag any data points not well-represented by the learned

model as anomalies.

Copyright info - Contract No. 101103667 9



e enerQe'hc | D3.1 - Al model for heat monitoring
= ~ oU

3.1. Reconstruction-based techniques

These techniques exploit the notion that anomalous image regions deviate
significantly from the patterns observed in training data, making their faithful
reconstruction challenging. This approach leverages various techniques:

e Generative models: Some techniques employ generative models like
autoencoders [Gong et al., 2019] and generative adversarial networks
(GANSs) [Goodfellow et al., 2014] to learn a compressed representation and
reconstruct normal data from it. Deviations from this learned
representation are then flagged as anomalies.

e Inpainting: Other techniques [Haselmann et al., 2018, Ristea et al., 2022,
Zavrtanik et al., 2021b] frame anomaly detection as an inpainting problem.
Here, random image patches are masked, and neural networks are trained
to predict and fill the missing information. The structural similarity index
(SSIM) loss function [Wang et al., 2004] is commonly used during training
to guide the reconstruction process towards preserving structural details.

e Anomaly map generation: Finally, an anomaly map can be generated by
calculating the pixel-wise difference between the original image and its
reconstructed version. This map highlights regions with significant

reconstruction errors, potentially indicating anomalies.

However, if anomalies share common features like local edges with normal data,
or the reconstruction model is overly powerful, accurate reconstruction of

anomalies might occur, leading to false negatives [Zavrtanik et al., 2021b].

3.2. Embedding-based techniques

These techniques have recently emerged as a powerful approach for anomaly
detection. They work by compressing normal features. The features are extracted
and embedded into a lower-dimensional space. This compression allows for
easier identification of anomalies, which typically lie far away from the clusters

formed by normal features.

Many techniques [Defard et al., 2021, Deng and Li, 2022, Roth et al., 2022,
Rudolph et al., 2022] utilize pre-trained models to extract relevant features from
the images. These models help improve performance by providing a good starting

point for feature extraction.

However, these techniques face several limitations:

Copyright info - Contract No. 101103667 10
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e Domain mismatch: real-time images often have different visual
characteristics compared to the data used to pre-train models. This
mismatch can lead to inaccurate anomaly detection.

e Performance limitations: Some techniques, like PaDiM [Defard et
al., 2021] and PatchCore [Roth et al., 2022], rely on computationally
expensive steps like calculating covariance inverses or searching
large memory banks. This can hinder real-time performance,
especially on resource-constrained devices.

e Memory consumption: Techniques like normalizing flow [Rezende
and Mohamed, 2015], employed by methods like CS-Flow [Rudolph
et al., 2022], CFLOW-AD [Gudovskiy et al., 2022], and DifferNet
[Rudolph et al., 2021], can be memory-intensive as they require
processing full-sized feature maps and utilizing memory-hungry
layers.

e Increased complexity: Distillation techniques [Bergmann et al.,
2020, Deng and Li, 2022] require training in two separate networks,
a teacher and a student, doubling the computational cost and
potentially slowing down inference.

3.3. Synthesizing-based techniques

These techniques adopt a different approach, aiming to learn how to differentiate
normal data from anomalies without actual anomalous examples. This strategy

involves:

e Synthesizing anomalies on clean images: Several techniques,
like DREAM [Zavrtanik et al., 2021a], attempt to generate realistic
"just-out-of-distribution" patterns and train a network to
discriminate between them and normal data. However, this
approach can be computationally expensive and may not capture
the full spectrum of real-world anomalies.

e CutPaste strategy [Li et al., 2021]: This simpler technique
randomly cuts and pastes image patches within an image, creating
altered versions that serve as synthetic anomalies. However, these
"anomalies" often lack the characteristics of real ones, limiting their
effectiveness.

e Synthesizing anomalies in feature space: [Liu et al., 2023, Sohn
et al., 2021] synthesize anomalies in the feature space by adding

Gaussian noise or data augmentation. These are interesting
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approaches and demonstrate high accuracy. Hence, this work is
inspired by such approaches while adapting the strategy to our
needs. It is worth noting that generating a comprehensive set of
synthetic anomalies to encompass all possible variations is
practically impossible, especially when dealing with diverse and
unpredictable anomalies like those in batteries.

3.4. Addressing existing limitations

To detect anomalies in thermal images of batteries, we can overcome the

limitations in the existing state of art by exploiting several key strategies:

e Feature space anomaly synthesis: Instead of generating synthetic
anomalies directly in the thermal image domain, which can be
unrealistic, we generate them within the embedded battery
feature space to allow for more efficient and accurate anomaly
representation.

e Domain adaptation: As pre-trained models introduce a domain
mismatch when applied to the acquired battery thermal images,
we incorporate a "feature adapter" to adjust pre-trained features
to the battery domain to improve its effectiveness.

o Efficient architecture: We utilize simplified but efficient
architecture for inference, see Section 4. This design choice
facilitates faster training, inference, and deployment, making it

suitable for real-applications and industrial settings.
Hence, our approach would:

e eliminate the need for extensive real anomaly data. Unlike
traditional methods requiring large amounts of labeled anomaly
data, our approach employs unsupervised learning. This allows
the model to learn from normal data and identify deviations without
pre-defined anomaly examples, making it more adaptable to
unforeseen anomalies in real-world scenarios.

e be universally applicable to diverse and unexpected anomaly
types that cannot be explicitly captured during training. This offers
significant benefits for early detection of possible battery failures,

potentially preventing catastrophic events.

Copyright info - Contract No. 101103667 12
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Current limitation: While our approach would support early anomaly detection,

a key limitation remains; pinpointing the specific cause of the detected anomaly.

This would require dedicated models trained on labeled data containing specific

types of anomalies. These are not available to the consortium as anomalous
behaviors are rare and acquiring enough real anomalous images might not be
achievable. Hence, the consortium adopted the unsupervised learning direction

which models the normality (where enough data is available) rather than
abnormality.

4. Unsupervised Thermal
based Anomaly Detection

We call the proposed approach FAUAD (Feature-Adapted Unsupervised Anomaly
Detection), see Figure 1. [t models the normality of the input data and synthesizes
anomalies (pseudo anomalies) in its feature space. It follows the ideology of One
Class Classification (OCC) anomaly detection algorithms where a model is
trained on what is considered “normal” data and then using that model to detect

whether new data is normal or an anomaly [Liu et al., 2023].

Training
g Features Domain
— . —_— .
) extraction adaptation
z
l Features
Discrimination
Pseudo
anomalies
generation
Testing /

Inference

Features Domain Features
- . . —_— . . . .
extraction adaptation Discrimination

Normal

Anomalies

Figure 1 A simplified illustration of the Energetic model called FAUAD for unsupervised anomaly

detection in thermal images of batteries.
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Given an input thermal image:

1. Features are extracted using the pretrained model to enrich the feature
space.

2. The features pass a domain adaptation step.

3. The adapted features are then disturbed using noise to act as pseudo
anomalies.

4. The adapted and disturbed features pass through a discriminator.

The above procedure has proven its effectiveness as will be seen in the reported
experiments in Section 4.4.

4.1. Proposed model

As briefly explained above, the proposed algorithm extracts normal features,
adapt them, produce pseudo anomalies, and finally discriminate between them.
The following subsections will give more details on each step.

4.1.1. Feature extraction

The Feature Extractor, following the approach described in [Roth et al., 2022, Liu
et al., 2023], obtains local features. For each image, the pre-trained network
extracts features from various hierarchies. However, since the pre-trained
network is biased towards the dataset on which it was trained, it is rational to

select only a subset of early levels that contain more generic features.

To ensure compatibility with edge devices and enable real-time applications with
EVs (Electric Vehicles), we opted for a lightweight pretrained resnet18 model in
PyTorch [PyTorch, 2024] where the features from the first three layers are used,
similarto [Akcay et al., 2022]. By selecting this model, we ensure that our solution
can be easily deployed on various edge devices without compromising
performance.

4.1.2. Domain adaptation

To address the difference in distribution between the captured thermal images
and the dataset used for backbone pre-training, we utilize a Feature Adaptor. This
Adaptor is employed to transfer the training features to the target domain,
ensuring compatibility between the two domains. the adaptor component

Copyright info - Contract No. 101103667 14
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performs a transformation on the pre-trained features. In our case, the feature
adaptor consists of a single fully connected layer that has the same number of
input and output channels, and it does not include a bias term [Liu et al., 2023].

4.1.3. Pseudo anomalies generation

Training the Discriminator to identify normal samples requires negative samples,
or examples of anomalies. While sampling real-world thermal anomalies can be
difficult, adding Poisson noise to normal features provides a tractable way to
generate artificial anomalies [Altmann et al., 2021]. Poisson noise is a natural
choice because it models the occurrence of rare events, which is a common
characteristic of anomalies in real-world data.

4.1.4. Features Discrimination

Acting as a normality scorer, the Discriminator learns to distinguish between
normal and anomalous images. During training, we present it with both normal
data (positive samples) and data augmented with Poisson noise (nhegative
samples). The Discriminator's goal is to output high values for genuine data
(normal features) and low values for anomalies (features with noise). We achieve
this with a simple two-layer multi-layer perceptron (MLP), a common architecture
for classification tasks.

4.2. Capturing thermal images

For Al thermal image analysis model training, real thermal images had to be
obtained. This has been performed by Coventry University, using FLIR T640
infrared camera by FLIR Systems. This system is rated at +/-2% of reading
accuracy, capturing 640 x 480 pixel images at 24 bit depth using sRGB colour

representation. Focal length of 13mm and exposure time of 1/46 sec. are pre-set.

The camera is suspended above the cell under testing (SPIM11309102-GL40
Pouch cell), as shown in Figure 2. The cell under testis connected to a 5V 200A 4-
wire battery cycler (Neware®). All testing is conducted inside a controlled

environment thermal chamber (Weiss Technik®).
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SPIM11309102-
GL40 Pouch cell

Figure 2 Thermal images acquisition test set-up

Initially obtained images contained reflections, which leads to erroneous thermal
readings, despite attempts to keep the chamber blacked out during tests. To
alleviate this issue the surface of the cell was sprayed with a matt black paint
(Ambersil) as advised by the thermal camera manufacturer, see Figure 3.
Following this correction, Example of the resulting thermal images is shown in
Figure 4.

Figure 3 Cell sprayed with matt black paint (Ambersi).

Thermalimages were collected using atime-lapse mode of 15 seconds perimage,
resulting in thousands of images per test. Cell cycling performance data
(potential, current, capacity) was collected alongside. The combined data
obtained was shared with SnT for Al image analysis training.

Copyright info - Contract No. 101103667 16
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Figure 4 Thermal image of a cell captured during cycling. Left) before painting, Right) after painting.

4.3. Thermal anomalies

Thermal anomalies can be defined by delta over space / gradient (e.g. one area is
hotter by 5 degrees - normal, by 20 degrees - anomalous), and time (steady
increase over time - normal, sudden increase —anomalous), so they exist across
both spatial and temporal axes. Inthermalimages, “overheat” refers to areas that
display colors towards the higher end of the used colormap, indicating
temperatures that exceed the normal or safe range for the observed object or
environment.

The proposed unsupervised anomaly detection model FAUAD is tested and
benchmarked against state-of-the-art models. Two sets of anomalies were
extracted from the captured thermal images: overheat images and the images
with non-uniform thermal propagation (represented by reflections), see Figures 5,
6.

Figure 5 Thermal image of a cell captured during cycling. Left) overheated, Right) with reflections before
matte black painting.

The first category represents dangerous levels of heat on the battery surface and
the second category visually represents non-homogeneous abnormal heat
propagation. Reflections observed during methodology development, as outlined
in section 4.2, have been utilized to replicate non-homogeneity. While coating the
cell with matte black paint, an area was masked and then uncovered, leaving a
reflective patch, see Figure 6. That patch resulted in spatial anomaly, leaving

Copyright info - Contract No. 101103667 17
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areas of sharp temperature gradient, which would indicate abnormal cell
operation and areas of potential cell failure.

Figure 6 Coating the cell with matte black paint, an area was masked and then uncovered, leaving a

reflective patch. Left) the painted cell, Right) the thermal image.

The captured thermal images have been structured to extend the MVTec
[Bergmannetal., 2019] industrial anomaly detection dataset for the classification
task. The “battery anomaly detection dataset” folder contains “train” and “test”
folders. The train folder contains normal data only in a folder called “good”. The
“test” folder contains the “good” folder for normal data and remaining folders
(“overheat” and “reflection”) to represent anomalies. For more examples, see
Appendix A.

It is important to note that the model learns what is ‘normal’ based on the input
data characterized as ‘normal.” Consequently, any pattern that deviates from this
learned normality, when introduced to the trained model, will be flagged as an
anomaly. For instance, consider a scenario where a thermal camera is dislodged
from its original position due to a significant jolt. This displacement may resultin
the production of thermal images with propagation patterns that differ markedly
from the ‘normal’ patterns on which the model was trained. In such a case, the
model would identify the observed images as anomalies. Although these are not
genuine anomalies from the perspective of the battery’s functionality, the

triggered anomaly alert would stillindicate that an abnormal event has occurred.

4.4. Experiments

We compared FAUAD’s performance to state-of-the-art algorithms using two
classification scenarios:

e The first scenario mimicked real-world data by including a small
percentage of anomalies (10%), simulating potential issues during data
collection. Although this might not be a realistic scenario in the context of
batteries as the environment will be well controlled for safety reasons, it
provides an opportunity to assess the effectiveness of FAUAD in learning

normality compared to existing studies.
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e The second experiment acted as a control, training on only clean, normal
data.

This two-pronged approach allows us to assess the robustness of all models

under realistic and ideal data collection conditions.

For feature extraction in all models, we opted for a lightweight backbone, pre-
trained ResNet18 model from PyTorch's TorchVision library. ResNet18's pre-
trained weights, obtained from its training on the massive ImageNet dataset,
provide a valuable foundation for anomaly detection. These pre-trained
features capture generic image properties that can be leveraged to model
normality in our task. This choice strikes a balance between model size and
performance, making it ideal for deployment on resource-constrained edge
devices.

Table 1 Experimental scenarios: First scenario (first column) mimicked real-world data simulating

potential issues during data collection. Second scenario (second column) to train on normal data only.

Technique AUROC (normal data | AUROC (clean Trained
contaminated with normal data) model size
10% anomalies)
FAUAD (Energetic’'s model) 0.990 1 15 MB
SimpleNet [Liu et al., 2023] 0.977 1 15 MB
DRAEM [Zavrtanik et al.,, 2021a] 0.922 0.991 1100 MB
CFA [Lee et al., 2022] 0.878 0.942 30MB
STFPM [Wang et al., 2021] 0.871 0.961 43 MB
PaDiM [Defard et al., 2021] 0.863 0.996 175 MB
EfficientAD [Batzner et al., 2024] 0.810 1 81 MB
DFM [Nilesh et al.,, 2019] 0.803 0.996 15 MB
FastFlow [Yu et al., 2021] 0.793 1 65 MB
PatchCore [Roth et al., 2022] 0.774 0.990 42 MB
CFLOW-AD [Gudovskiy et al., 2022] 0.769 0.873 171 MB

This table compares FAUAD with the state-of-art anomaly detection techniques
based on Area Under the ROC Curve (AUROC), model size, and performance on
clean vs. contaminated data. Here are some key takeaways:

e FAUAD (Energetic's model): This model boasts the highest AUROC
(0.990) on contaminated data and a perfect score (1) on clean data.
Additionally, its model size is a modest 15 MB. This combination makes it

a very attractive option for edge devices.
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o SimpleNet: While not quite reaching the heights of FAUAD, SimpleNet
delivers a strong AUROC (0.977) on contaminated data and maintains a
perfect score on clean data. It also shares the same 15 MB model size as
FAUAD, making it another strong contender.

e Performance on Clean Data: Techniques like DFM (15 MB), CFA (30 MB),
PatchCore (42 MB), STFPM (43 MB), FastFlow (65 MB) and EfficientAD (81
MB), have lower overall performance on contaminated data. However,
they excel at identifying normal data (AUROC is equal or close to 1).

In conclusion, FAUAD and SimpleNet emerge as the top contenders based on
their high AUROC on contaminated data, perfect score on clean data, and

compact model size.

5. Conclusion

This report addressed the crucial challenge of ensuring safety and reliability in
Electric Vehicles (EVs) by proposing FAUAD, a novel approach for unsupervised
anomaly detection in Lithium-ion battery thermal images. Thermal anomalies
pose a significant threat to battery health, and FAUAD offers an efficient and
robust solution for their early detection to help mitigate any significant threat due
to unexpected failures.

A key strength of FAUAD in battery health monitoring lies in its ability to leverage
unsupervised learning. This approach is particularly well-suited due to the
scarcity of labeled thermal image-based anomaly data. By focusing on readily
available normal data, FAUAD can effectively detect anomalies without the need
for extensive and potentially hazardous anomaly collection.

The conducted experiments demonstrate FAUAD's effectiveness. Amongst the
evaluated techniques, FAUAD and SimpleNet emerge as the frontrunners. Both
achieve a perfect AUROC score on clean data, indicating exceptional ability to
identify normal battery behavior. Furthermore, FAUAD boasts the highest AUROC
(0.990) on normal data contaminated with few anomalies, highlighting its
proficiency in anomaly detection even under less-than-ideal conditions. This is
achieved while maintaining a compact model size (15 MB), making it suitable for

deployment on resource-constrained edge devices commonly found in EVs.
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In conclusion, FAUAD presents a significant advancement in unsupervised
anomaly detection for Lithium-ion batteries. Its ability to leverage readily
available normal data, combined with its strong performance and efficient
design, makes FAUAD a compelling solution for ensuring EV battery safety and
reliability. Future work could explore incorporating labeled data, if it becomes
available, to potentially improve FAUAD's ability to pinpoint the root cause of
detected anomalies.
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Appendix A

The following sections present thermal images captured using the method described
in Section 4.2. Note that the ambient room temperature during capture was
approximately 24°C.

The maximum temperature displayed in the images may vary depending on the

thermal camera settings. There are two main options:

e Automatic: In this mode, the colormap is relative and doesn't directly translate
to normal vs. abnormal behavior. It simply shows a temperature gradient from
coldest (typically dark blue) to hottest (typically red or yellow).

e Fixed: This mode sets a specific temperature range for the colormap. This
allows the images to visually represent normal operation (colors within a safe
range) and unsafe operation (colors exceeding a pre-defined threshold,
typically above 50°C).

Using the fixed mode of the colormap is crucial for accurate analysis.

Examples of normal heat propagation

Under normal operation, a thermal image of a battery should display a consistent
pattern of heat dissipation.

24.0 $FLIR
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Examples of overheating

While the heat distribution appears uniform, the shades of red color indicate the
presence of dangerously high temperatures.

24.0 §SFLIR

Examples of non-homogenous heat propagation

In the absence of real non-homogenous heat propagation anomalies for testing
purposes, we can leverage reflections in thermal images, see Section 4.2 and 4.3, to
simulate non-uniform heat patterns. These reflections may cause colors in the image
to deviate from the expected homogenous distribution on the battery surface which

resembles non-homogenous propagation anomalies.

24.1 $FLIR
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Examples of overheating and non-homogenous heat propagation

These images showcase an example where two visual anomalies coexist - uneven heat
distribution across the battery surface and excessively high temperatures

(overheating).
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